
RuStore Developer
Documentation

Table of Contents

For developers 12
Developer account 13

Create a developer account 13
How to create a developer account for a company / individual entrepreneur14

How to create a developer account for a foreign company 17
How to get a VK ID 24
How to add more developers 25

Adding Users and Selecting a Role 26
App publishing and verification 30

Declare app permissions 32
How to declare app permissions 33
Data types and categories 35
Types of permissions 39

Publish your app 53
How to upload a new app version 58
Adding TV version
Uploading App Bundles
ASO Recommendations

Manage availability for your app 60
Customize your app release options 61

Auto & manual app release 61
Delayed app release 64
Staged app release 66
How to manage APK signing keys 69

Paid apps 71
App Review Guidelines 75
Age ratings 81
How to choose an appropriate category for your app 84
RuStore Ratings & Reviews 88
How to deal with negative reviews 89
How to capture HAR logs (Google Chrome) 90

Monetization 92
How to enable monetization on the RuStore
Test payments 93

Monetization for foreign companies on RuStore 96
Create and fill out a monetization request
Payments management 96
App Statistics 105

Monetization report 111
How to create a paid in-app product 113

2

How to create an app subscription 114
Ads and promotion 115

How to add a "Download from the RuStore" button 115
Requests for in-app events
VK Ads on RuStore 117
How to set up an advertising campaign via VK Ads 117
How to add an app via VK Ads 118
Tools 123

General information 123
Connecting a tool 123

RuStore Remote Config 124
SDK and app configuration 125

Tracer 145
Quickstart 145
Migrating to a new version 148
Tracer Modules 149

Developer Documentation 156
RuStore Billing SDK 156

Kotlin 156
Quick Start 157
General Information 161
Payment functions availability 165
How to get up-to-date information on the product list 166
How to get the user's list of products 170
How to get purchase info 174
How to handle purchases 177
Server purchase validation 178
Purchase confirmation 179
Purchase cancellation 181
Error Handling 181
Consumption and cancellation scenario 183
Event Logging 184
Theme Changing 186
Error handling 186
SDK payment error codes 188
Migration to Payments SDK v2.2.0 and higher 190
1.x.x to 3.x.x Payments Migration 196
Payment Errors FAQ 202
RuStore SDK payments Release Notes 209

Godot 212
General Information 212
Embed in your project 212
Exporting a project with an enabled plugin 213

3

How to initialize the library 214
Payment functions availability 215
Getting the product list 215
How to get the user's list of products 218
Getting purchase info 220
How to handle purchases 222
Purchase confirmation 224
Purchase cancellation 226

Java 227
Quick Start 228
General Information 234
Payment functions availability 238
How to get the user's list of products 239
How to get the user's list of purchases 243
How to get purchase info 247
How to handle purchases 251
Server purchase validation 253
Purchase confirmation 254
Purchase cancellation 255
Consumption and cancellation scenario 256
Event Logging 257
Theme Changing 259
Error handling 260
Migration to Payments SDK from v.1.x.x to v3.x.x 261
Model update 262
RuStore SDK payments Release Notes 268

Unity 269
General Information 270
Payment functions availability 274
How to get the user's list of products 275
How to get the user's list of purchases 277
How to handle purchases 282
Purchase confirmation 284
Purchase cancellation 285
Confirmation and cancellation scenario 286
Error handling 287
Unity plug-in revision history 289

Flutter 290
General Information 291
Payment functions availability 294
How to get the list of products 295
How to get the user's list of purchases 298
How to handle purchases 301
Purchase confirmation 304

4

Unreal Engine 305
General Information 305
Calling CheckPurchasesAvailability 309
Getting the List of Purchases 319
Getting Purchase Info 326
How to handle purchases 329
Consumption and cancellation scenario 348
Error handling 349

React Native 352
General Information 352
Embed in your project 352
How to initialize the library 354
Payment functions availability 354

Getting the List of Products 355
Getting the List of Purchases 358

Getting Specific Purchase Info 359
How to handle purchases 360
Purchase confirmation 363
Purchase cancellation 364
Consumption and cancellation scenario 365

Unreal 366
Push notifications SDK 385
Kotlin 385

General 387
Checking ability to receive push notification 391
Methods for working with push token 392
Methods for working with push topics 393
Getting data from RuStore SDK 394
Notification structure 396
Event logging 398
Error handling 400
RuStore SDK for revision history 402

Unreal 404
General information 404
Connecting to project 404
Initialization 405
Initialization 405
Push notification availability check 409
Methods for working with push tokens 410
Retrieving the user's push token 410
Methods for working with push topics 412
Topic-based subscription for push notifications 412
Error handling 414

Unity 415

5

General 415
Connecting to the project 415
Checking ability to receive push notification 419
Push Token Management Methods 420
Push Topics Management Methods 421
Notification structure 424
Error handling 426

Flutter 427
General 428
Checking ability to receive push notification 431
How to work with push tokens and push notifications 432
Notification structure 434
Sending push notifications 436
Push notification examples 439
Sending push notifications by topic 443
Sending Push Notification to topic 443
Subscribing to push notifications by topic 444
Unsubscribing from push notifications by topic 446

Java 448
General 448
Methods for working with push topics 451
Notification structure 455
Event logging 458
Error handling 460

Defold 462
General 462
Connecting to the project 463
Push token and message methods 464
User-group focused Push Notifications API
Testing push notification integration

RuStore General Push Notifications SDK 466
Kotlin 466

App Feedback and Rating SDK 486
Android (Kotlin/Java) 486

App Feedback and Rating SDK 487
Importing SDK to your project 489
Creating RuStoreReviewManager 490
Getting ReviewInfo object 491
Starting app rating 492
Possible errors 493
RuStore Change History Feedback and Rating SDK 494

Unreal 495
General information 495
Conditions for proper SDK performance 495

6

https://docs.google.com/document/d/1wqhaBNmDoyca_ml3bBh7Gm60Y5nSnSDx/edit#heading=h.1cbvvo0

Connecting to project 495
Initialization 496
Launching rating flow 496
Error handling 497

Unity 498
General 499
Importing SDK to your project 501
Creating RuStoreReviewManager 502
App release preparation 503
Starting app rating 504
Handling errors 505

Flutter 506
General 507
Importing SDK to your Project 509
Feedback request 510
Godot

React Native
App Update SDK 511

Kotlin/Java 511
Unreal 524
Unity 530
Flutter 541
Unreal 549

List of App Update Dependencies 561
List of available SDK 561

Compatible SDK versions 562
RuStore Geo 562

Terms of Use of RuStore Geo Functionality on the RuStore 563
General 567

Access to services 568
Search and geocoding services 570

Search for Places of Interest 570
Geocoding service 580
Address and Place Autocomplete 601

Map display services 610
Interactive map 611
Static map 757
Map styles 772

Routing Services 773
Route Planner 774
Distance Matrix 822
Reachable Area 830
Best Route Planner 843

7

Polyline Route Decoding 850
Maps Mobile SDK 855

Android 856
iOS 867

Additional services 880
Time zone detection 894
Postal code search 897

RuStore Deeplinks 910
Task API 911

Getting started with RuStore APIs 915
List of available RuStore API methods 915
How to sign up and start using API RuStore 919
Generating an authorization token 924
How to retrieve payment data using a purchase token 928
How to retrieve subscription data via a subscription token 943
How to retrieve subscription data by an invoice ID (V2) 951
Getting subscription data (v3)
How to retrieve subscription status by a subscription token 958
Confirming subscription
Uploading and Publishing Apps using the RuStore API 960

Creating a draft release 960
Manual publication 969
Changing publication settings 971
Getting app version status 975
Uploading screenshots 983

Uploading an app icon 986
Uploading an APK file 988

List of App Categories 992
Deleting a draft release 995
Submitting a draft app release for review 997

Using the RuStore API for Review Management 999
General Review Management Workflow 999
Getting app feedback 1000
Receiving feedback in .csv 1008
Leaving a reply to review 1011
Getting review response status 1013

Confirm subscription via a subscription token 1016
Editing review response 1018
Deleting review response 1020
Getting app rating 1021

Using RuStore API for Access Control

8

For developers

The RuStore Console is a content management system designed to manage applications.

Users can log in to the system using a single VK ID.

Developers have access to the RuStore Console through the web interface.

9

https://dev.rustore.ru/

Developer account

Create a developer account
You can create an account for a legal entity or an individual on the RuStore Console.

Registration of legal entities/individual entrepreneurs is intended for:
● commercial and industrial companies;
● state-owned enterprises;
● professional developers.

When creating an account of a legal entity / individual entrepreneur, it is required to sign a
registration form with a qualified e-signature.

Registration of individuals is intended for personal use and is perfect for:
● students;
● non-professionals;
● semi-professional developers.

Individuals are required to confirm their accounts through remote identity verification.

10

https://dev.rustore.ru/

How to create a developer account for a company / individual entrepreneur

1. Open the RuStore Console in your browser.
2. Click "Go to the Console".
3. Then click "Sign in with VK ID".

4. Enter the phone number connected to your VK ID or create a new account.
5. Click "Continue".

6. Select "Create account".

11

https://dev.rustore.ru/

You can go to the account creation form from the page of the RuStore Console. To do
that, click "Create account".

7. Select "Legal Entity".
8. Click "Continue".

9. Fill in all the required fields.
10. Click "Submit".

Fill in the "Contact person" section. Specify your contact details so that we can get back
to you quickly whenever so requested.

12

https://dev.rustore.ru/
https://dev.rustore.ru/

13

How to create a developer account for a foreign company

1. Open the RuStore Console in your browser.
2. Click Sign in to RuStore Console.

3. Select Legal entity.

Please note that currently a foreign company can sign up as a legal entity only.

14

https://dev.rustore.ru/

The Crypto Pro plug-in is only required for Russian companies.

4. Click Sign in with VK ID.

5. Enter the phone number linked to your VK ID or create a new account. You can
use international phone numbers to create an account.

6. Click Continue.

7. Then click Create Account.

Please note that you can only link one company to one account. If a company
account has already been created by another employee, please contact them to add
your account to the company account.

15

8. Click Continue.

16

17

9. Then fill in all the required fields.
- The trade name is the name the RuStore and the www.rustore.ru users will see.

Please enter a name that is familiar to your users, or the one you use for promotion.
This will help users easily discover you on the RuStore catalog.

Note. We may ask you to verify your rights to the specified trade name. You are not
required to have your rights legally registered, however, in this case, we will ask you to
ensure that the use of this trade name does not violate the rights of third parties.

- The legal name is your company name, which is indicated in its constituent
documents. Please be careful when filling out this field, as we will check whether this
name corresponds to the one specified in the documents you provided.

- When filling in the Contact person section, specify the up-to-date contact details so
that we can get back to you quickly whenever so required.

- The Phone Number and Email sections are intended for internal communications
with RuStore and will not be visible to users. Please enter the international phone
number in the Representative number field.

- Make sure that the Tax or registration number field matches the information in
your constituent documents.

10. In the Documents section, attach all the required documents in English or in Russian:

Note. Please provide certified translation of your company documents.

The Link to your app in other stores is a mandatory field. If your app has not been published in
other stores yet, you can attach a link to an official website where your app is posted.

- company establishment documents that confirm that the company is registered within
the corresponding jurisdiction, for example: business license, Charter certified by a
government agency, certificate of registration, and others.

- documents confirming partner representative's authority to sign up on the RuStore, e.g.
power of attorney, appointment letter, Charter, etc. Please make sure that the
representative’s details correspond to the contact person specified in the section above;

- partner’s domain name/trademark/logo registration certificate, for example: registration
certificate, license agreement, copyright holder permission, etc. If there are no registered
rights, you must provide a letter confirming the absence of logo, domain name,
trademarks infringement and unregistered rights letter of guarantee.

11. Click Submit a request for app review. Your request will be reviewed and approved by a
moderator.

18

Please make sure that your sign-up request meets the RuStore Guidelines.
Otherwise we will notify you via email of your request status.

19

How to install the CryptoPro plug-in

The CryptoPro EDS Browser plug-in is designed to create and verify digital signatures on web
pages. It supports a wide range of algorithms, both built into the OS and additionally installed.

Note. The CryptoPro plug-in is required for Russian companies only.

Follow the steps below to install the CryptoPro EDS Browser plug-in:

1. Download and install a cryptographic provider for generating and verifying digital
signatures according to GOST algorithms. We recommend CryptoPro CSP. Install the
certificate from the provider's store.

2. Download and install the CryptoPro EDS Browser plug-in for the interaction of web
pages in your browser with the crypto provider in the OS. This application is designed to
create and verify digital signatures on web pages. How to install CryptoPro ES Browser
plug-in on Windows?

3. Check the created digital signature on a special site to make sure that everything is set
correctly and all system elements interact steadily.

20

https://cryptopro.ru/products/csp
https://cryptopro.ru/products/cades/plugin/get_2_0
https://docs.cryptopro.ru/cades/plugin/plugin-installation-windows
https://docs.cryptopro.ru/cades/plugin/plugin-installation-windows
https://www.cryptopro.ru/sites/default/files/products/cades/demopage/cades_bes_sample.html

How to get a VK ID

VK ID is a single account for all VK services. If you already have a VKontakte profile, it will
automatically become your VK ID.

If you do not want to link your RuStore Console account to a personal VKontakte profile
or you do not have one, you can create a new profile and use it as a corporate one.

How to get a VK ID:
1. Log in to your VKontakte profile.
2. Go to the "Settings" section.
3. Find the "Page address" block.
4. Click "Edit" to see the page number if you previously assigned an alphanumeric

identifier.

This is your VK ID.

21

https://console.rustore.ru/sign-in
https://vk.com/

How to add more developers

The company employee, whose VK ID was specified upon signing up, is considered the
company owner. Each company can have only one owner.

A company owner can only register one Company, hence, it is recommended to create a single
corporate VK ID (of an individual) for app management.
The company owner can create applications and assign / add developers for each app by their
VK IDs.

How to add an additional developer

1. The developer who needs to be added to the app management should be authorized via
his VK ID (of an individual) on the RuStore Console (no further operations on the
RuStore Console are required at this step).

2. The developer should send his VK ID as "12345678" to the company owner. How to get
a VK ID?

3. The company owner should add the developer’s VK ID to the corresponding app.

Once there, the developer will have access to the corresponding application. He can change the
app description and data, or either create, prepare and publish new app versions.

The developer is not allowed to register companies, create new apps, or add other developers
to applications.

22

https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/acc_developers/VKID
https://help.rustore.ru/rustore/for_developers/acc_developers/VKID

Adding Users and Selecting a Role
To enhance the management of application operations for employees, you can impose
restrictions and assign predefined roles. This approach provides clear configuration options
for their interactions with the applications. For example, allow an employee to only publish
applications or make refunds.

How to Add Users

1. Select an application.

2. Go to Permissions in the left menu.

3. Click Invite User at the top.

4. Specify the user's VK ID. How to get your VK ID?

5. Select a user role. You can only select one option from the list.

23

https://help.rustore.ru/rustore/for_developers/acc_developers/VKID

6. Click Invite.

How to Edit Permissions

1. Select a user.

2. Click next to it.

3. Select a new role.

24

4. Click Save.

How to Delete a User

1. Select a user.

2. Click next to it.

3. Click Delete.

Please be aware that once a user is deleted, it cannot be undone, and you will need to
re-add the user if he was deleted by mistake.

What are the available role options to choose from?

There are five possible user roles in RuStore:

25

● Company owner;
● Developer;
● Financial Manager;
● Release manager;
● Support specialist.

Company
owner

Release
manager

Developer Financial
Manager

Support
specialist

App distribution

View app download
statistics

✔ ✔ ✔ ✔ ✔

Upload, edit app
versions, submit
them for
moderation

✔ ✔ ✔

Invite users and
manage
permissions

✔ ✔

Create and delete
applications

✔

Services

Connect push
notifications, view
statistics

✔ ✔ ✔

26

Connect RuStore
Geo

✔ ✔ ✔

Connect RuStore
API

✔

Monetization

Create
subscriptions,
inn-app products

✔ ✔ ✔

Manage payments,
make refunds

✔ ✔

View financial
statistics

✔ ✔

Fill in and edit
company bank
details

✔

Enable
monetization

✔

Support

Check reviews and
respond to them

✔ ✔ ✔

App publishing and verification

Once you've created your RuStore Console developer account, you can publish your application on
the RuStore.

27

https://dev.rustore.ru/

How much does it cost to publish an application on the RuStore

RuStore does not charge for hosting of both free or paid apps.

28

Declare app permissions

RuStore is primarily committed to ensure user safety. To keep user data safe, RuStore checks
all requested permissions for each application. Furthermore, we have launched a system
capable of recognizing user data types collected and transmitted by the application.

Declaring permissions and providing information about the requested data increases
transparency and helps the store and users understand how user data is processed and what it
is used for.

29

How to declare app permissions

To ensure safety of user data, the RuStore Console features a new User Data Safety section
that requires a developer to provide information about categories and data types collected by
the app, as well as about dangerous permissions. This section is divided into two subsections,
i.e. “Dangerous permissions” and “Data types and categories”.

The “Dangerous permissions” subsection provides a list of dangerous permissions and will only
be displayed if your app possesses any of them.

In case there are any dangerous permissions detected in your app, you need to fill in the
“Purpose” field, specifying the reason why your app requests this or that permission.

Then, specify all data types your app requests the access to in The “Data types and categories”
subsection.

For more information about available data types, see Categories and data types.

The “Data types and categories” section is available for all app versions regardless of a
permission type.

Once you have completed all the required fields and sent it for moderation, the RuStore team
will start verifying your application.

Please make sure to check out RuStore Guidelines before submitting your app for
moderation.

If there are any dangerous permissions detected, the RuStore team will carry out a thorough
check.

30

https://console.rustore.ru/
https://help.mail.ru/rustore/for_developers/publishing_and_verifying_apps/Declare_app_permissions/Data_categories
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/requirement_apps

If your app will be proved not to comply with the permission rules, we will get back to you by
email for some clarifications.

You can proceed to app release once your app has successfully completed the Developer
Guidelines Check.

31

Data types and categories

Data types and categories are required to make it clear to the user how your app uses their
personal data and ensures its safety.

Information on data types and categories collected by your app will be available to users on the
homepage of RuStore.

When uploading or updating an app, developers will be asked to specify all user data collected
and transferred by the app, namely:

● all user data types collected and/or transferred by the app:
● all user data sent from a user’s device via libraries or SDK regardless of the recipient,

i.e. a developer or third party;
● all user data sent from the developer's server to a third party or app on the same device.

Categories and data types

Category Data type Description

Location Approximate
location

User device's physical location to an area greater
than or equal to 3 square kilometers, such as the
city the user is in.

Precise
location

User device's physical location within an area less
than 3 square kilometers.

Personal
info

Name User first or last name, or nickname.

Email
address

User email address.

User IDs Identifiers that relate to an identifiable person. For
example, an account ID, account number, or
account name.

Address User address, such as a mailing or home address.

Phone
number

User phone number.

Race and
ethnicity

Information about the user's race or ethnicity.

32

Political or
religious
beliefs

Information about the user's political or religious
beliefs.

Sexual
orientation

Information about the user's sexual orientation.

Other info Any other personal information such as date of
birth, gender identity, veteran status, etc.

Financial
info

User
payment
info

Information about the user's financial accounts,
such as credit card number.

Purchase
history

Information about purchases or transactions the
user has made.

Credit score Information about the user's credit. For example,
the user’s credit history or credit score.

Other
financial info

Any other financial information, such as the user's
salary or debts.

Health
and
fitness

Health info Information about the user's health, such as medical
records or symptoms.

Fitness info Information about the user's fitness, such as
exercise or other physical activity.

Messages Emails User emails, including the email subject line, sender,
recipients, and the content of the email.

SMS or MMS User text messages, including the sender, recipients,
and the content of the message.

Other in-app
messages

Any other types of messages. For example, instant
messages or chat content.

Photos
and
videos

Photos User photos.

Videos User videos.

Audio
files

Voice or
sound
recordings

User voice, such as a voicemail or a sound
recording.

Music files User music files.

33

Other audio
files

Any other audio files the user created or provided.

Files and
docs

Files and
docs

User files or documents, or information about the
user’s files or documents, such as file names.

Calendar Calendar
events

Information from the user’s calendar, such as
events, event notes, and attendees.

Contacts Contacts Information about the user’s contacts, such as
contact names, message history, and social graph
information like usernames, contact recency, contact
frequency, interaction duration, and call history.

App
activity

App
interactions

Information about how the user interacts with the
app. For example, the number of times the user
visits a page or sections the user taps on.

In-app
search
history

Information about what the user has searched for in
the app.

Installed
apps

Information about the apps installed on the user’s
device.

Other
user-generat
ed content

Any other content the user generated that is not
listed here, or in any other section. For example,
bios, notes, or open-ended responses.

Other
actions

Any other activity or actions in-app not listed here,
such as gameplay, likes, and dialog options.

Web
browsing

Web
browsing
history

Information about the websites the user has visited.

App info
and
performa
nce

Crash logs Crash data from the app. For example, the number
of times the app has crashed on the device or other
information directly related to a crash.

Diagnostics Information about the performance of the app on
the device. For example, battery life, loading time,
latency, framerate, or any technical diagnostics.

34

Other app
performance
data

Any other app performance data not listed here.

Device or
other IDs

Device or
other IDs

Identifiers that relate to an individual device,
browser, or app. For example, an IMEI number, MAC
address, Widevine Device ID, Firebase installation
ID, or advertising identifier.

35

Types of permissions

All the permissions that are required by your app are subject to primarily check once added to
the RuStore Console.

The developer is obliged to declare all permissions, except for Normal, i.e. Dangerous,
Special, Signature.

The apps that use permissions from the “Not for use by third-party applications”
category will be blocked automatically.

Dangerous, Special and Signature permissions are considered altogether as “Dangerous
permissions”.

All the available permissions are listed below.

Permission levels

Level Name Description

Not for use by
third-party
applications

ACCESS_CHECKIN_PROPERTIES Allows read/write access to the
"properties" table in the checkin database,
to change values that get uploaded.

ACCOUNT_MANAGER Allows applications to call into
AccountAuthenticators.

BIND_APPWIDGET Allows an application to tell the AppWidget
service which application can access
AppWidget's data.

BLUETOOTH_PRIVILEGED Allows applications to pair bluetooth
devices without user interaction, and to
allow or disallow phonebook access or
message access.

BROADCAST_PACKAGE_REMOVE
D

Allows an application to broadcast a
notification that an application package has
been removed.

BROADCAST_SMS Allows an application to broadcast an SMS
receipt notification.

CALL_PRIVILEGED Allows an application to call any phone
number, including emergency numbers,
without going through the Dialer user
interface for the user to confirm the call
being placed.

36

https://console.rustore.ru/
https://developer.android.com/guide/topics/permissions/overview#dangerous_permissions
https://developer.android.com/guide/topics/permissions/overview#special_permissions
https://developer.android.com/guide/topics/permissions/overview#signature_permissions
https://developer.android.com/guide/topics/permissions/overview#dangerous_permissions
https://developer.android.com/guide/topics/permissions/overview#special_permissions
https://developer.android.com/guide/topics/permissions/overview#signature_permissions

CAPTURE_AUDIO_OUTPUT Allows an application to capture audio
output.

CHANGE_COMPONENT_ENABLED
_STATE

Allows an application to change whether an
application component (other than its own)
is enabled or not.

CONTROL_LOCATION_UPDATES Allows enabling/disabling location update
notifications from the radio.

DELETE_PACKAGES Allows an application to delete packages.

DIAGNOSTIC Allows applications to RW to diagnostic
resources.

DUMP Allows an application to retrieve state
dump information from system services.

FACTORY_TEST Run as a manufacturer test application,
running as the root user.

INSTALL_LOCATION_PROVIDER Allows an application to install a location
provider into the Location Manager.

INSTALL_PACKAGES Allows an application to install packages.

LOCATION_HARDWARE Allows an application to use location
features in hardware, such as the
geofencing api.

MANAGE_WIFI_INTERFACES Allows applications to get notified when a
Wi-Fi interface request cannot be satisfied
without tearing down one or more other
interfaces, and provide a decision whether
to approve the request or reject it.

MANAGE_WIFI_NETWORK_SELEC
TION

This permission is used to let OEMs grant
their trusted app access to a subset of
privileged wifi APIs to improve wifi
performance.

MASTER_CLEAR Not for use by third-party applications.

MEDIA_CONTENT_CONTROL Allows an application to know what content
is playing and control its playback.

MODIFY_PHONE_STATE Allows modification of the telephony state -
power on, mmi, etc.

MOUNT_FORMAT_FILESYSTEMS Allows formatting file systems for removable
storage.

MOUNT_UNMOUNT_FILESYSTEMS Allows mounting and unmounting file
systems for removable storage.

37

OVERRIDE_WIFI_CONFIG Allows an application to modify any wifi
configuration, even if created by another
application.

READ_INPUT_STATE This constant was deprecated in API level
16. The API that used this permission has
been removed.

READ_LOGS Allows an application to read the low-level
system log files.

REBOOT Required to be able to reboot the device.

REQUEST_COMPANION_PROFILE_
APP_STREAMING

Allows application to request to be
associated with a virtual display capable of
streaming Android applications
(AssociationRequest.DEVICE_PROFILE_A
PP_STREAMING) by
CompanionDeviceManager.

REQUEST_COMPANION_PROFILE_
AUTOMOTIVE_PROJECTION

Allows application to request to be
associated with a vehicle head unit capable
of automotive projection
(AssociationRequest.DEVICE_PROFILE_A
UTOMOTIVE_PROJECTION) by
CompanionDeviceManager.

REQUEST_COMPANION_PROFILE_
COMPUTER

Allows application to request to be
associated with a computer to share
functionality and/or data with other
devices, such as notifications, photos and
media
(AssociationRequest.DEVICE_PROFILE_
COMPUTER) by
CompanionDeviceManager.

SEND_RESPOND_VIA_MESSAGE Allows an application (Phone) to send a
request to other applications to handle the
respond-via-message action during
incoming calls.

SET_ALWAYS_FINISH Allows an application to control whether
activities are immediately finished when put
in the background.

SET_ANIMATION_SCALE Modify the global animation scaling factor.

SET_DEBUG_APP Configure an application for debugging.

SET_PROCESS_LIMIT Allows an application to set the maximum
number of (not needed) application
processes that can be running.

SET_TIME Allows applications to set the system time
directly.

SET_TIME_ZONE Allows applications to set the system time
zone directly.

38

SIGNAL_PERSISTENT_PROCESSE
S

Allow an application to request that a
signal be sent to all persistent processes.

START_FOREGROUND_SERVICES
_FROM_BACKGROUND

Allows an application to start foreground
services from the background at any time.

STATUS_BAR Allows an application to open, close, or
disable the status bar and its icons.

UNINSTALL_SHORTCUT Don't use this permission in your app.

UPDATE_DEVICE_STATS Allows an application to update device
statistics.

WRITE_APN_SETTINGS Allows applications to write the apn
settings and read sensitive fields of an
existing apn settings like user and
password.

WRITE_GSERVICES Allows an application to modify the Google
service map.

WRITE_SECURE_SETTINGS Allows an application to read or write the
secure system settings.

Dangerous ACCEPT_HANDOVER Allows a calling app to continue a call which
was started in another app.

ACCESS_BACKGROUND_LOCATIO
N

Allows an app to access location in the
background.

ACCESS_COARSE_LOCATION Allows an app to access approximate
location.

ACCESS_FINE_LOCATION Allows an app to access precise location.

ACCESS_MEDIA_LOCATION Allows an application to access any
geographic locations persisted in the
user's shared collection.

ACTIVITY_RECOGNITION Allows an application to recognize physical
activity.

ADD_VOICEMAIL Allows an application to add voicemails into
the system.

ANSWER_PHONE_CALLS Allows the app to answer an incoming
phone call.

BLUETOOTH_ADVERTISE Required to be able to advertise to nearby
Bluetooth devices.

BLUETOOTH_CONNECT Required to be able to connect to paired
Bluetooth devices.

BLUETOOTH_SCAN Required to be able to discover and pair
nearby Bluetooth devices.

39

BODY_SENSORS Allows an application to access data from
sensors that the user uses to measure
what is happening inside their body, such
as heart rate.

BODY_SENSORS_BACKGROUND Allows an application to access data from
sensors that the user uses to measure
what is happening inside their body, such
as heart rate.

CALL_PHONE Allows an application to access data from
sensors that the user uses to measure
what is happening inside their body, such
as heart rate.

CAMERA Required to be able to access the camera
device.

GET_ACCOUNTS Allows access to the list of accounts in the
Accounts Service.

NEARBY_WIFI_DEVICES Allows an instant app to create foreground
services.

POST_NOTIFICATIONS Allows interaction across profiles in the
same profile group.

PROCESS_OUTGOING_CALLS This constant was deprecated in API level
29. Applications should use
CallRedirectionService instead of the
Intent.ACTION_NEW_OUTGOING_CALL
broadcast.

READ_CALENDAR Allows an application to read the user's
calendar data.

READ_CALL_LOG Allows an application to read the user's call
log.

READ_CONTACTS Allows an application to read the user's
contacts data.

READ_EXTERNAL_STORAGE Allows an application to read from external
storage.

READ_MEDIA_AUDIO Allows an application to read audio files
from external storage.

READ_MEDIA_IMAGES Allows an application to read image files
from external storage.

READ_MEDIA_VIDEO Allows an application to read video files
from external storage.

READ_PHONE_NUMBERS Allows read access to the device's phone
number(s).

40

READ_PHONE_STATE Allows read only access to phone state,
including the current cellular network
information, the status of any ongoing calls,
and a list of any PhoneAccounts registered
on the device.

READ_SMS Allows an application to read SMS
messages.

RECEIVE_MMS Allows an application to monitor incoming
MMS messages.

RECEIVE_SMS Allows an application to receive SMS
messages.

RECEIVE_WAP_PUSH Allows an application to receive WAP push
messages.

RECORD_AUDIO Allows an application to record audio.

SEND_SMS Allows an application to send SMS
messages.

USE_SIP Allows an application to use SIP service.

UWB_RANGING Required to be able to range to devices
using ultra-wideband.

WRITE_CALENDAR Allows an application to write the user's
calendar data.

WRITE_CALL_LOG Allows an application to write (but not read)
the user's call log data.

WRITE_CONTACTS Allows an application to write the user's
contacts data.

WRITE_EXTERNAL_STORAGE Allows an application to write to external
storage.

ACCESS_BLOBS_ACROSS_USERS Allows an application to access data blobs
across users.

BATTERY_STATS Allows an application to collect battery
statistics

BIND_ACCESSIBILITY_SERVICE Must be required by an
AccessibilityService, to ensure that only
the system can bind to it.

BIND_AUTOFILL_SERVICE Must be required by a AutofillService, to
ensure that only the system can bind to it.

BIND_CALL_REDIRECTION_SERVI
CE

Must be required by a
CallRedirectionService, to ensure that only
the system can bind to it.

41

BIND_CARRIER_MESSAGING_CLIE
NT_SERVICE

A subclass of
CarrierMessagingClientService must be
protected with this permission.

BIND_CARRIER_SERVICES The system process that is allowed to bind
to services in carrier apps will have this
permission.

BIND_CHOOSER_TARGET_SERVIC
E

This constant was deprecated in API level
30. For publishing direct share targets,
please follow the instructions in
https://developer.android.com/training/sha
ring/receive.html#providing-direct-share-ta
rgets instead.

BIND_COMPANION_DEVICE_SERVI
CE

Must be required by any
CompanionDeviceServices to ensure that
only the system can bind to it.

BIND_CONDITION_PROVIDER_SE
RVICE

Must be required by a
ConditionProviderService, to ensure that
only the system can bind to it.

BIND_CONTROLS Allows SystemUI to request third party
controls.

BIND_DEVICE_ADMIN Must be required by device administration
receiver, to ensure that only the system
can interact with it.

BIND_DREAM_SERVICE Must be required by an DreamService, to
ensure that only the system can bind to it.

BIND_INCALL_SERVICE Must be required by a InCallService, to
ensure that only the system can bind to it.

BIND_INPUT_METHOD Must be required by an
InputMethodService, to ensure that only
the system can bind to it.

BIND_MIDI_DEVICE_SERVICE Must be required by an
MidiDeviceService, to ensure that only the
system can bind to it.

BIND_NFC_SERVICE Must be required by a HostApduService or
OffHostApduService to ensure that only
the system can bind to it.

BIND_NOTIFICATION_LISTENER_S
ERVICE

Must be required by an
NotificationListenerService, to ensure that
only the system can bind to it.

42

BIND_PRINT_SERVICE Must be required by a PrintService, to
ensure that only the system can bind to it.

BIND_QUICK_ACCESS_WALLET_S
ERVICE

Must be required by a
QuickAccessWalletService to ensure that
only the system can bind to it.

BIND_QUICK_SETTINGS_TILE Allows an application to bind to third party
quick settings tiles.

BIND_REMOTEVIEWS Must be required by a
RemoteViewsService, to ensure that only
the system can bind to it.

BIND_SCREENING_SERVICE Must be required by a
CallScreeningService, to ensure that only
the system can bind to it.

BIND_TELECOM_CONNECTION_S
ERVICE

Must be required by a ConnectionService,
to ensure that only the system can bind to
it.

BIND_TEXT_SERVICE Must be required by a TextService (e.g.
SpellCheckerService) to ensure that only
the system can bind to it.

BIND_TV_INPUT Must be required by a TvInputService to
ensure that only the system can bind to it.

BIND_TV_INTERACTIVE_APP Must be required by a
TvInteractiveAppService to ensure that
only the system can bind to it.

BIND_VISUAL_VOICEMAIL_SERVIC
E

Must be required by a link
VisualVoicemailService to ensure that only
the system can bind to it.

BIND_VOICE_INTERACTION Must be required by a
VoiceInteractionService, to ensure that
only the system can bind to it.

BIND_VPN_SERVICE Must be required by a VpnService, to
ensure that only the system can bind to it.

BIND_VR_LISTENER_SERVICE Must be required by an VrListenerService,
to ensure that only the system can bind to
it.

BIND_WALLPAPER Must be required by a WallpaperService,
to ensure that only the system can bind to
it.

43

CHANGE_CONFIGURATION Allows an application to modify the current
configuration, such as locale.

CLEAR_APP_CACHE Allows an application to clear the caches
of all installed applications on the device.

DELETE_CACHE_FILES Old permission for deleting an app's cache
files, no longer used, but signals for us to
quietly ignore calls instead of throwing an
exception.

GET_ACCOUNTS_PRIVILEGED Allows access to the list of accounts in the
Accounts Service.

GLOBAL_SEARCH This permission can be used on content
providers to allow the global search
system to access their data.

INSTANT_APP_FOREGROUND_SE
RVICE

Allows an instant app to create foreground
services.

INTERACT_ACROSS_PROFILES Allows interaction across profiles in the
same profile group.

LAUNCH_MULTI_PANE_SETTINGS_
DEEP_LINK

An application needs this permission
forSettings.ACTION_SETTINGS_EMBED
_DEEP_LINK_ACTIVITY to show its
Activityembedded in Settings app.

LOADER_USAGE_STATS Allows a data loader to read a package's
access logs.

MANAGE_DOCUMENTS Allows an application to manage access to
documents, usually as part of a document
picker.

MANAGE_EXTERNAL_STORAGE Allows an application a broad access to
external storage in scoped storage.

MANAGE_MEDIA Allows an application to modify and delete
media files on this device or any connected
storage device without user confirmation.

MANAGE_ONGOING_CALLS Allows to query ongoing call details and
manage ongoing calls

PACKAGE_USAGE_STATS Allows an application to collect component
usage statistics

READ_ASSISTANT_APP_SEARCH_
DATA

Allows an application to query over global
data in AppSearch that's visible to the
ASSISTANT role.

44

READ_HOME_APP_SEARCH_DATA Allows an application to query over global
data in AppSearch that's visible to the
HOME role.

READ_PRECISE_PHONE_STATE Allows read only access to precise phone
state.

READ_VOICEMAIL Allows an application to read voicemails in
the system.

REQUEST_COMPANION_SELF_MA
NAGED

Allows an application to create a
"self-managed" association.

REQUEST_INSTALL_PACKAGES Allows an application to request installing
packages.

SCHEDULE_EXACT_ALARM Allows applications to use exact alarm
APIs.

START_VIEW_APP_FEATURES Allows the holder to start the screen with a
list of app features.

START_VIEW_PERMISSION_USAG
E

Allows the holder to start the permission
usage screen for an app.

SUBSCRIBE_TO_KEYGUARD_LOC
KED_STATE

Allows an application to subscribe to
keyguard locked (i.e., showing) state.

SYSTEM_ALERT_WINDOW Allows an app to create windows using the
typeWindowManager.LayoutParams.TYP
E_APPLICATION_OVERLAY, shown on
top of all other apps.

USE_ICC_AUTH_WITH_DEVICE_ID
ENTIFIER

Allows to read device identifiers and use
ICC based authentication like EAP-AKA.

WRITE_SETTINGS Allows an application to read or write the
system settings.

WRITE_VOICEMAIL Allows an application to modify and
remove existing voicemails in the system.

Normal ACCESS_LOCATION_EXTRA_COM
MANDS

Allows an application to access extra
location provider commands.

BLUETOOTH Allows applications to connect to paired
bluetooth devices.

BLUETOOTH_ADMIN Allows applications to discover and pair
bluetooth devices.

BROADCAST_STICKY Allows an application to broadcast sticky
intents.

45

CALL_COMPANION_APP Allows an app which implements the
InCallService API to be eligible to be
enabled as a calling companion app.

CHANGE_NETWORK_STATE Allows applications to change network
connectivity state.

CHANGE_WIFI_MULTICAST_STATE Allows applications to enter Wi-Fi Multicast
mode.

CHANGE_WIFI_STATE Allows applications to change Wi-Fi
connectivity state.

DELIVER_COMPANION_MESSAGE
S

Allows an application to deliver companion
messages to system

DISABLE_KEYGUARD Allows applications to disable the
keyguard if it is not secure.

EXPAND_STATUS_BAR Allows an application to expand or
collapse the status bar.

FOREGROUND_SERVICE Allows a regular application to use
Service.startForeground.

GET_PACKAGE_SIZE Allows an application to find out the space
used by any package.

HIDE_OVERLAY_WINDOWS Allows an app to prevent
non-system-overlay windows from being
drawn on top of it

HIGH_SAMPLING_RATE_SENSORS Allows an app to access sensor data with
a sampling rate greater than 200 Hz.

INSTALL_SHORTCUT Allows an application to install a shortcut
in Launcher.

INTERNET Allows applications to open network
sockets.

KILL_BACKGROUND_PROCESSES Allows an application to call
ActivityManager.killBackgroundProcesses(
String).

MANAGE_OWN_CALLS Allows a calling application which
manages its own calls through the
self-managedConnectionService APIs.

MODIFY_AUDIO_SETTINGS Allows an application to modify global
audio settings.

NFC Allows applications to perform I/O
operations over NFC.

46

NFC_PREFERRED_PAYMENT_INF
O Allows applications to receive NFC

preferred payment service information.

NFC_TRANSACTION_EVENT Allows applications to receive NFC
transaction events.

QUERY_ALL_PACKAGES Allows query of any normal app on the
device, regardless of manifest
declarations.

READ_BASIC_PHONE_STATE Allows read only access to phone state
with a non dangerous permission,
including the information like cellular
network type, software version.

READ_NEARBY_STREAMING_POLI
CY

Allows an application to read nearby
streaming policy.

READ_SYNC_SETTINGS Allows applications to read the sync
settings.

READ_SYNC_STATS Allows applications to read the sync stats.

RECEIVE_BOOT_COMPLETED Allows an application to receive the
Intent.ACTION_BOOT_COMPLETED that
is broadcast after the system finishes
booting.

REORDER_TASKS Allows an application to change the
Z-order of tasks.

REQUEST_COMPANION_PROFILE_
WATCH

Allows app to request to be associated
with a device via
CompanionDeviceManager as a "watch"

REQUEST_COMPANION_RUN_IN_
BACKGROUND

Allows a companion app to run in the
background.

REQUEST_COMPANION_START_F
OREGROUND_SERVICES_FROM_
BACKGROUND

Allows a companion app to start a
foreground service from the background.

REQUEST_COMPANION_USE_DAT
A_IN_BACKGROUND Allows a companion app to use data in the

background.

REQUEST_DELETE_PACKAGES Allows an application to request deleting
packages.

REQUEST_IGNORE_BATTERY_OP
TIMIZATIONS

Permission an application must hold in
order to use
Settings.ACTION_REQUEST_IGNORE_B
ATTERY_OPTIMIZATIONS.

47

REQUEST_OBSERVE_COMPANION
_DEVICE_PRESENCE

Allows an application to subscribe to
notifications about the presence status
change of their associated companion
device

REQUEST_PASSWORD_COMPLEXI
TY

Allows an application to request the screen
lock complexity and prompt users to update
the screen lock to a certain complexity level.

SET_ALARM Allows an application to broadcast an
Intent to set an alarm for the user.

SET_WALLPAPER Allows applications to set the wallpaper.

SET_WALLPAPER_HINTS Allows applications to set the wallpaper
hints.

TRANSMIT_IR Allows using the device's IR transmitter, if
available.

UPDATE_PACKAGES_WITHOUT_U
SER_ACTION

Allows an application to indicate
viaPackageInstaller.SessionParams.setReq
uireUserAction(int) that user action should
not be required for an app update.

USE_BIOMETRIC Allows an app to use device supported
biometric modalities.

USE_EXACT_ALARM Allows apps to use exact alarms just like
with SCHEDULE_EXACT_ALARM but
without needing to request this permission
from the user.

USE_FINGERPRINT This constant was deprecated in API level
28. Applications should request
USE_BIOMETRICinstead

USE_FULL_SCREEN_INTENT Required for apps targeting
Build.VERSION_CODES.Q that want to use
notification full screen intents.

VIBRATE Allows access to the vibrator.

WAKE_LOCK Allows using PowerManager WakeLocks to
keep processor from sleeping or screen
from dimming.

WRITE_SYNC_SETTINGS Allows applications to write the sync
settings.

Deprecated BIND_CARRIER_MESSAGING_SER
VICE

This constant was deprecated in API level
23. Use BIND_CARRIER_SERVICES
instead

GET_TASKS This constant was deprecated in API level
21. No longer enforced.

48

PERSISTENT_ACTIVITY This constant was deprecated in API level
15. This functionality will be removed in
the future; please do not use. Allow an
application to make its activities persistent.

RESTART_PACKAGES This constant was deprecated in API level
15. The
ActivityManager.restartPackage(String)
API is no longer supported.

SET_PREFERRED_APPLICATIONS This constant was deprecated in API level
15. No longer useful,
seePackageManager.addPackageToPrefe
rred(String) for details.

SMS_FINANCIAL_TRANSACTIONS This constant was deprecated in API level
31. The API that used this permission is
no longer functional.

RuStore’ Requirements to app permissions are comparable to Google Play Guidelines and are
based on Google terms for developer’s convenience.

For up-to-date permission categories refer to:
https://developer.android.com/reference/android/Manifest.permission

49

https://developer.android.com/reference/android/Manifest.permission

Publish your app

Publish your app to make it available to users on the RuStore.
1. Open the RuStore Console.
2. Select the "Applications" tab.
3. Click "Add an app".
4. Enter the app name in the pop-up window.
5. Click "Add".
6. Select the added app.
7. Click "Submit for moderation".

50

https://console.rustore.ru/sign-in

51

Fill in the required information fields

Upload an APK file to your app:
● An APK file should not exceed 2.5 GB;
● Make sure your file has an.apk extension;
● Generate a signed APK file;
● Use a unique package name;
● The app package must be checked and adjusted.

When downloading the second and subsequent versions:
● An APK file should not exceed 2.5 GB;
● Make sure your file has an.apk extension;
● Generate a signed APK file;
● The signature must match the previous one;
● The app package must match the previous one;
● The app package must be checked and adjusted;
● The version code must be greater than the previous one.

When submitting an APK file to the RuStore Console, ensure that it carries the same signature
as used in other app stores, such as Google Play. This will allow users to update apps installed
on their devices whenever a newer version is available on the RuStore.

If you decide to use a new signing key, you will need to replace it in all stores as well, including
Google Play. How do I update my Google Play app signing?

In case you need to replace the signing key on the RuStore, please reach out to
support@rustore.ru

Note that if the signing keys do not match, users will be unable to update an app that
was initially installed via a different store.

Fill in the required app information fields

1. Add the name of your app:
○ The app name should not exceed 30 characters;
○ The app name must be unique.

2. Choose your app category from the proposed list.
3. Specify an age rating according to the suggested guideline
4. Add a short description of your application (up to 40 characters).
5. Once there, add a detailed description of your application (up to 4000 characters.

Always keep in mind the user's ability to minimize the description window for up to 2000
characters).

52

https://console.rustore.ru/sign-in
https://support.google.com/googleplay/android-developer/answer/9842756?visit_id=638150905149654896-2147605919&rd=1#upgrade
mailto:support@rustore.ru

Upload app icon

● The image must not exceed 3 MB;
● Accepted image formats: .png or .jpg;
● The image resolution must be 512 x 512 px.

Upload app screenshots

You can add screenshots for mobile phones only. In this case, the same screenshots will be
displayed on both device types: phones and tablets.

Besides, you can upload additional screenshots for tablets. Then phone screenshots will be
displayed on devices with screens smaller than 7 inches, and tablet screenshots will appear in
the application page on devices with 7-inch screens or larger.

Please make sure that you have uploaded screenshots for the mobile app version.

How to add screenshots
● Select vertical or horizontal orientation.
● Specify the device type: phone or tablet.
● Upload 1 to 10 screenshots.

Image Requirements
● The image size should not exceed 3 MB for phones and 5 MB for tablets;
● The image should no exceed 3 MB;
● Accepted image formats: .png or .jpg;
● Maximum resolution — 2160х3840 px;
● Recommended aspect ratio: 16:9;
● If the width or height is less than the recommended one, the screenshot will be stretched

to 16:9;
● If the width or height is greater than the recommended one, the screenshot will be

cropped to 16:9.

Add a link to a video

You can also add a link to a video hosted on VK Video. The video will be available in the
application page for phones and tablets.

Video Requirements:

- it must be directly related to the application (for example, you can upload a trailer,
gameplay recording, etc.);

- it must not contain inappropriate content (see Application Requirements);
- the video must be public;
- the page on which the video is posted must be open to all users. If you add a video from

a page with limited privacy settings, then the video must be moved to a group or public
page with open access.

53

The video duration cannot exceed 1 minute;
You can only add one video.

Enter a description and click "Submit for moderation".

Before submitting an application for moderation, make sure you checked the application
for compliance with the App Review Guidelines.

To add a developer responsible for the app, the following conditions must be met:
● The developer should be logged in to the RuStore Console;
● The developer should send the VK ID to the employee who uploaded the app (in digital

format).

54

https://dev.rustore.ru/

Uploading App Bundles
Uploading applications in AAB format is now available via the RuStore Console. This
format streamlines the process, resulting in faster installations due to reduced file sizes
for users downloading from RuStore.

How to upload App Bundles

1. Open RuStore Console.
2. Go to the Applications tab.
3. Click Add an App.
4. In the window that opens, enter the app name.
5. Click Add.
6. Select the added application.
7. Click Upload app version.
8. Upload your app signing keys in .aab format
9. Upload the application's AAB file.

55

56

Requirements for uploading App Bundles:

App signing keys must be added separately before uploading the .aab file.

● The application file should not exceed 500 MB.
● Ensure that the package name is unique.
● Thoroughly test and configure the build.

Uploading app signing keys
For Android App Bundle to work, you need to upload the app signing key:

1. Go to the warning “Signature not uploaded” and click “Uploaded”.

2. In the new window, select Upload to acquire the PEPK tool.
3. Click Copy to duplicate the command along with your distinctive encryption key.

57

4. Customize the command by providing your data instead of the default values.
5. Run the tool to export and encrypt the private key using the modified command within
a terminal. Substitute the parameters and input the vault and key passwords when
prompted.

java -jar pepk.jar --keystore=your_key_storage.keystore
--alias=имя_ключа --

6. Upload the ZIP archive created using the PEPK tool.
When migrating from .apk to .aab format, the signing certificate must match
the signature fingerprint of the previous version.
7. Upload the upload key certificate that signed your AAB in .PEM.

58

59

Creating a signing key for app bundle

To generate a private key (sign key) for your Android App Bundle, which will be used to
sign the .apk files distributed to users, follow these steps:

1. Create a new key pair (alias=sign) by executing the following command in the
terminal:

keytool -keystore .keystore -genkey -alias sign_v1 -keyalg
RSA -validity 36500

where sign is the name of the app signing key.
2. Copy the PEPK command from the second step of the signing key modal.
3. Obtain the PEPK utility from the first step of the modal and transfer it to the

system folder of your PC.
4. Run the tool that exports and encrypts the private key using the modified

command in a terminal. Subsequently, replace the arguments and input the vault
and key passwords when prompted:

java -jar pepk.jar --keystore your_key_storage.keystore
--alias key_name --output
new_path_for_created_certificate/pepk_out.zip
--encryptionkey=your_unique_encryption_key --include-cert

5. Generate the upload key that signs your .aab file using the command:

keytool -keystore .keystore -genkey -alias upload -keyalg RSA
6. Obtain the boot certificate from the previously generated boot key using

the command below:

keytool -exportcert -alias upload -keystore .keystore -rfc
-file uploadcert.pem

8. Upload the ZIP archive created using the PEPK tool and the download
certificate obtained from steps 4 and 6 into modal options 3 and 4
respectively.

60

9. Go to the App Signing Key page and verify that the signature has been
successfully uploaded and the appropriate information is displayed for
it.

61

How to upload a new app version

Once published, you can upload new versions for your app.

1. Open the RuStore Console.
2. Select the "Applications" tab.
3. Choose an application.
4. Click "Upload a new version".
5. Specify the app parameters.

Please make sure that you have uploaded screenshots for the mobile app version.

6. Select the app release options.
7. Click "Submit for moderation".

For paid apps, enter the price of your app. Developers who sell paid apps are subject to
a 15% service fee.

When submitting an APK file to the RuStore Console, ensure that it carries the same signature
as used in other app stores, such as Google Play. This will allow users to update apps installed
on their devices whenever a newer version is available on the RuStore.

If you decide to use a new signing key, you will need to replace it in all stores as well, including
Google Play. How do I update my Google Play app signing?

In case you need to replace the signing key on the RuStore, please reach out to
support@rustore.ru

Note that if the signing keys do not match, users will be unable to update an app that
was initially installed via a different store.

Before submitting your app for moderation, be sure to check the application for compliance with
the App Review Guidelines.

If you change the price when publishing a new app version, describe changes in the new
app version in the "Description" section.

The application will be sent for moderation.

62

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/account/setting_up_publication
https://console.rustore.ru/sign-in
https://support.google.com/googleplay/android-developer/answer/9842756?visit_id=638150905149654896-2147605919&rd=1#upgrade
mailto:support@rustore.ru

63

Adding an application to your TV device

When publishing an app, you must specify the type of device on which the application
will be used.

1. Open RuStore Console.

2. Go to the "Applications" tab and click "Add an app".

3. Select the app type in the pop-up window: "Universal" or "Only for TV".

Select the "Universal" type if your app's APK is suitable for phone, tablet and TV.

Note. Only free applications are available for TV: if you download an apk file for TV,
creating a paid universal application is not possible.

4. Enter the name of your app and click "Add".

Restrictions:

1. If different versions are uploaded, the `package_name` for TV must be different from
the `package_name` of the mobile app.

2. APK apps can be downloaded for mobile and TV versions at the same time with the
same `package_name` for the same version.

64

To download a new version of the application, in the “Versions” tab, click “Download
Version” and fill in the following information:

**Download the APK file of the application and leave a comment for the moderator if
necessary:**

- APK file size: no more than 2.5 GB;

- Valid format: `.apk`;

- The apk signature must match the signature used in other app stores (for example,
Google Play).

This will allow users to update applications installed on the device, for which a newer
version is available in RuStore.

You can specify a new signing key, but then it needs to be replaced in all stores. [How
to update your signature on Google
Play?](https://support.google.com/googleplay/android-developer/answer/9842756?visit_
id=638150905149654896-2147605919&rd=1#upgrade)

- The package name must be unique.

Fill in the application information:

1. Enter the name of the application:

- no more than 50 characters;

- the application name must be unique.

65

2. Select a category from the list provided.

3. Select an age limit from the list provided.

4. Enter a brief description of the application (up to 80 characters).

5. Enter a detailed description of the application (up to 4000 characters).

Upload the app icon:

- Image size: no more than 3 MB;

- Valid format: `.png` or `.jpg`;

- Image size: 512x512.<

Upload at least 2 screenshots of the application:

- Format: JPEG or PNG (24-bit without alpha channel);

- Recommended size: 1920 x 1080 pixels (16:9 ratio);

- Recommended volume: no more than 3 MB;

- Resolution: 320p to 4k.

The TV banner will be the **first** screenshot when publishing the application on TV.

66

Configure application publication: “Automatically after moderation” or “Manually”.

For more information about setting up app publishing, see Automatically and manually
publishing an app

1. Click "Submit for moderation".

The app will be sent for moderation. After the moderation, the status of your
application will be changed and the "Publish" button will appear.

2. Click Publish and your app will be available on TV.

ASO Recommendations

One of the main factors influencing the development of RuStore is the availability of
applications. To catch the user's eye, it is important to describe the app in detail and wrap it in a
compelling design. This will help to increase the number of installs and level up the app's
positions in searches.

RuStore operates with several parameters to generate app search results. Here are some of
them that we would like to draw attention to:

Rating. The higher the rating, the higher the position of the app in the list. It is important that the
developer actively responds to user feedback. RuStore performs automatic and manual rating
checks to make sure there is no tipping. You can increase the number of ratings by requesting
them from users using [RuStore Reviews&Ratings SDK](/sdk/reviews-ratings).

67

Number of installations. The more there are, the more likely the app is to get to the top.
However, you shouldn't use cheating, organic traffic is the only thing that matters here. To
promote the application, the developer can place a download button on their resources or use
advertising. This will help to attract an audience and improve positions.

Number of conversions to installation. RuStore recommends that you use compelling design
from the get-go to make sure conversion rate is high. It is vital to design screenshots properly,
add a sufficient number of them to the description and update the "What's new?" section. This
will help to increase the number of app downloads.

Number of ratings and their distribution. The more positive ratings, the better! RuStore
recommends to respond to its users in time, refine the application constantly, boost its
functionality, encourage users to rate and write comments. This will also improve the app's
rendering performance. It is important to remember that RuStore monitors and suppresses the
use of spoofing. [RuStore Reviews&Ratings SDK](/sdk/reviews-ratings) will simplify the work
with reviews and natively encourage users to give their feedback right in your app.

Manage availability for your app
Set up an available area where users can install your app on their devices. RuStore is now
accessible in Russia and various other countries. At that, users can update previously
downloaded apps regardless of their accessibility preferences.

1. Open RuStore Console.
2. Go to Applications.
3. Select an app.
4. Click Countries and Regions from the left side menu.

68

https://console.rustore.ru/sign-in

5. Check the boxes next to areas where you want your app to be accessible.
Uncheck the boxes to prevent your app from being visible in the chosen area.

69

Customize your app release options

Auto & manual app release

You can set up auto/instant app release while it undergoes moderation.

Instant app release is available to you when you first publish an app version and when
you upgrade a previously uploaded version.

Auto/instant release

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Waiting for moderation" status.
4. Click "Manage app release".
5. Select "Publish automatically after moderation".

Once moderation is completed, the app will be published on the RuStore within one hour. You
will be notified about your app status by email.

You can change the release status from auto to manual as long as your app undergoes
moderation.

70

https://console.rustore.ru/sign-in

Manual release

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Waiting for moderation" status.
4. Click "Manage app release".
5. Select "Manually".

After the moderation, the app status will change to “Ready for publication”.

6. Click "Manage app release".
7. Select "Now".
8. Click "Apply".

You can also stop the current version. Click Unpublish to deactivate the published app version.
The last active version will then be activated.

At that the users will continue to use your app if they installed a new app version before
deactivation.

71

https://console.rustore.ru/sign-in

Delayed app release

You can delay your app release to a specific date and time.

The delayed release is only available when upgrading a previously uploaded app
version.

Manage app release when uploading a new app version

1. Open the RuStore Console.
2. Select the "Applications" tab.
3. Choose an application.
4. Upload a new app version.
5. Then go to the "Publish an app version" block.
6. Select "At the selected date and time".
7. Set the release date and time.
8. Next, click "Submit for moderation".

Your app will be sent for moderation.

Manage app release during moderation

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Waiting for moderation" status.
4. Click "Manage app release".
5. Select "At the selected date and time".
6. Once there, select the release date and time.

Once moderation is completed, the app will be published on the RuStore at the selected date
and time. You will be notified about your app status by email.

Manage app release after moderation

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Ready for release" status.
4. Click "Edit description" and scroll down to the “Publishing version” section.
5. Select "At the selected date and time".
6. Once there, click "Submit for review".

72

https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in

Once moderation is completed, the app will be published on the RuStore at the selected date
and time. You will be notified about your app status by email.

You can change your delayed release parameters if:
● your application undergoes moderation;
● your application has passed moderation, but the release date has not yet come.

73

Staged app release

You can publish your app in stages to make it available for a certain group of users. This will
help you quickly track down bugs, issues, or negative reviews for a specific app version.

Staged release is only available when upgrading a previously uploaded version.

The following percentage values are available for a group of users:
● 5%
● 10%
● 25%
● 50%
● 75%
● 100%

You can also increase the percentage value. Staged release completion stands for 100% of
users.

Manage app release when uploading a new version

1. Open the RuStore Console.
2. Select the "Applications" tab.
3. Choose an application.
4. Upload a new app version. How to do it?
5. Then go to the "Publish an app version" block.
6. Specify the percentage of users.

You can select the percentage of users if you choose to publish your app automatically
or either manually.

7. Click "Submit for moderation".

Your application will be sent for moderation.

Manage app release during moderation

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Waiting for moderation" status.
4. Click "Manage app release".
5. Specify the percentage of users.
6. Once there, click "Apply".

74

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/account/new_version_app
https://console.rustore.ru/sign-in

If you change auto or manual release to delayed one, the percentage of users will
automatically change to 100%.

Manage app release after moderation

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an app with the "Ready for release" status.
4. Click "Manage app release".
5. Select "Now".
6. Specify the percentage of users.

You can only increase the percentage of users, decrease is not available.

7. Once there, click "Apply".

The app version will be published, and app version update will be available for randomly
selected users.

75

https://console.rustore.ru/sign-in

You can also stop the staged release. Click "Manage app release" and select "Stop". The
updated app version will be deactivated, the last active version will then be activated.

At that, the users will continue to use your app if they installed a new app version before
deactivation.

76

How to manage APK signing keys

How to sign an Android app

RuStore supports one application format which is an APK file.

Each APK file must be signed with a digital certificate, which Android uses to identify the app
owner. Please ensure safe storage of the signing key.

Check Android versions

Android compares digital footprints of each signed .APK file.
A digital fingerprint is a sequence of bytes created by applying a cryptographic hash function to
a public key.

The digital fingerprint is represented as follows:
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8

What causes update errors?

One of the most common mistakes publishers make is using different signatures for an app
published on the RuStore and other stores.

For example, the initially downloaded app version is signed with one certificate and the next
version is signed by another one. Due to these differences, Android does not allow you to install
updates for this application.

What are possible reasons:
1. The developer loses a certificate and then generates a new one to publish the

application in the store.
2. Developers can publish the same application in different stores. For example,

initially the developer published applications on Google Play and used one
certificate. But after switching to RuStore, he started using a different certificate.

This results in dividing users into two categories:
- those who installed an app from Google Play,
- those who downloaded it from RuStore.

If a user has installed RuStore and wants to update an app that was previously downloaded
from Google Play, he will not be able to do this due to different certificates.

How can this problem be solved?

77

1. We recommend using one certificate for all app versions to avoid problems with
version updates from different sources.

2. In case of urgence, you can ask users to remove the "old" app versions that
cannot be updated, and ask them to download new ones. But this method is
associated with the risk of losing part of the audience.

3. You can also update the app signature with the help of RuStore technical
support. The steps are listed below.

RuStore recommends using a locally stored certificate for more control over app releases.
If you use Google Play App Signing, which allows Google Play to generate and store the
signature on its own, you may find that you cannot use the certificate outside of Google Play.

Resolving Update Errors with RuStore Support

To update the signing key, send an email to support@rustore.ru

Specialists will initiate an appeal and check that the application belongs to the applicant.
Upon successful identification, the support specialist will deactivate the old certificate. After that,
the developer just needs to upload the new APK file with an updated signing certificate common
to RuStore and other stores.

78

mailto:support@rustore.ru

Paid apps

You can set your app as free or paid when adding a new app to the RuStore Console,

Enable monetization to upload paid apps.

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Click "Add an app".
4. Enter the name of your app in the pop-up window.
5. Select the app type: "Free" or "Paid".
6. Click "Add".

You cannot change a free app to a paid app on the RuStore.

Once you selected the "Free" app type, it cannot be changed to "Paid". If you want to charge for
such an app, you need to re-upload it with a new name.

You can also update your app prices when editing or when uploading a new app version.

How to change the app price

1. Open the RuStore Console.
2. Click the "Applications" tab.

79

https://help.rustore.ru/rustore/for_developers/Monetization/how-to-enable-subscription-monetization-in-RuStore
https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in

3. Select an application.
4. Click "Edit".
5. Enter the new app price.

RuStore service fee for paid apps is 15%. In case RuStore acts as the developer’s tax
agent, apart from service fee, taxes will be withheld in accordance with the legislation of the
Russian Federation.

6. Click "Submit for moderation".

Before submitting your app for moderation, be sure to check the application for compliance with
the App Review Guidelines.

A new app version will be created and sent for moderation. After the moderation, the status of
your application will be changed and the "Publish" button will appear.

Click "Publish" to make your app available to users. The new app price will be displayed on the
RuStore.

80

81

To set up in-app product pricing, see how to create paid in-app items.

To set up subscription pricing, see how to create an app subscription

82

App Review Guidelines

Before your app is published on the RuStore, it needs to pass mandatory review. Throughout
this process you’ll go through the entire user journey to make sure that your app works properly,
corresponds to the declared category and age rating without neither posing any security risks
nor threatening the laws and rights of other users. Non-compliance with the specified
requirements may result in the application being declined for publication or, if violations are
identified after review, the app may be removed from the store.

Follow a few steps below to double-check your app before publishing it on the RuStore:

1. Your app performance meets the following requirements:
● It runs and works steadily without failures and errors;
● All declared app features work correctly;
● We do not allow publishing apps that cause crashes, force close, freeze or work with

errors;
● Your app must be self-sustaining and have original content. We discourage applications

that are primarily designed to redirect to a website (WebView). An application may
duplicate a website functionality or use a WebView to perform certain options, but it must
be represented as a complete, standalone product. We reserve the right to block your
app if we suspect that it is published solely to drive traffic to a website;

● Your app should not contain abundant advertising that will interfere with its usage (ads
after each user action), or either with no options to remove ads from the screen;

● Each user should be able to successfully pass through authorization whenever so
required without redirecting to third-party resources;

● For limited-audience apps only: specify test account data in a comment and send it for
review;

● Do not forget to provide test authorization data to RuStore moderators in the "Comments
for moderators" field to test the app functionality. Make sure that the demo mode shows
all the app features.

● Make sure that your app is adapted to most modern mobile devices - no errors and
incorrect layout of applications are allowed.

2. Your app content is designed as follows:
The application, its page and user content must be completely free of the following:

● any ethically inappropriate statements or ideas: overt discrimination, rabble-rousing,
insults (except of playful jokes), etc.;

● offers for sale or distribution of illegal goods (prescription drugs, narcotic substances,
weapons, tobacco and nicotine products to-be-delivered, etc.) and services (prostitution,
forgery, hacking services, cheating, etc.) .);

● prohibited pornographic content (obscene images of minors, bestiality, dolcett, etc.),
including drawings;

● shocking content and realistic images of people or animals being killed, maimed,
tortured or tormented, except for those related to the relevant genre and age category
(medical content)

83

● suicidal content in any form and in any context, including images or romanticization of
self-harm;

● trademarks and third-party intellectual property, including misleading logos and names;
Please note: if your application is an official partner of another service, please provide us
with sufficient documents confirming this status. RuStore reserves the right to selectively
check documents related to intellectual property rights.

● links to third party app stores or storefronts, phishing and irrelevant links.

Note. It is forbidden to publish apps related to holding and conduct of gambling,
accepting bets and other games that involve real money.
If an app implies posting user-generated content, the developer ensures to provide
timely and adequate pre-view of this content or post-moderation based on user
complaints.
Applications with user-generated content or social networks must include:

- definition and criteria for inappropriate content;
- offensive content reporting options;
- access restrictions for those who fail to comply with the rules;
- support or app review team contact details.

Application reviewers must promptly respond to user problems and requests from
RuStore technical support.

If an app includes user-generated content from an adult website, then it should be
hidden by default and be only visible to users who have enabled it on the site.

84

3. Application security and user rights protection:
● Your app must not contain malicious or phishing links;
● If your app implies working with personal data, make sure that you are officially

recognized as a personal data operator. You must also inform the user about the
collection and use of their personal data and obtain their consent for data processing;

● If your app features in-purchase options, provide the user with detailed information about
the payment process, as well as about products delivery and return. Please follow the
Consumer Protection Act.

4.Privacy and device data:

While running, your app may access personal and sensitive user data stored on a device.
Before you start, we recommend that you read the Declare app permissions section. RuStore
accepts the following permission levels:

- prohibited;
- sensitive;
- safe;
- obsolete.

If prohibited permissions (protection level “not for use by third party applications”) are
discovered in the app when uploading it to the RuStore Console, this version will be rejected. In
this case the APK file needs to be finalized, excluding prohibited permissions, and re-uploaded.
If sensitive permissions are found when uploading the application, the developer should provide
sufficient reasons for each permission in the Sensitive Permissions section.

At this point, make sure that:
● data obtained with a user’s consent is not intended for sale, as well as for distribution

and further sale;
● permissions are not granted to bypass device privacy settings;
● your application requests only those permissions that are essential for the provided

service;
● If the user refuses to grant permission, you should not try to persuade him otherwise.

You can provide a permission-free alternative to the service. Invite the user to find the
nearest office on the map and not based on the device location;

● A user grants his consent as a certain active action. For example, an automatic window
closing, intentional or accidental dialogue exit is not considered as a consent;

● information about requested permissions is available to users. You can embed this
information into the app and post a link or data tag in the app description on the RuStore
store;

● You have informed the users about all requested permissions and the purposes for
which they are requested. In case of any inconsistencies we may request some more
clarifications.

We ask you to take reasonable steps to prevent the use of your app for illegal purposes. If you
don’t follow the above guidelines, the application and the developer account it may be blocked
on the RuStore.

85

5. App type:

When releasing an app, make sure to label it as "Paid" if it lacks any free features or
functionality.

Free apps can still offer paid subscriptions and in-app purchases.

For subscription-based apps, users should have access to certain app features and
functionality before subscribing. It's crucial to clearly inform users about the availability and
cost of a subscription in such cases.

To set up paid content for your app, refer to the guides "How to Create a Paid In-App Item"
and "How to Create an App Subscription." Keep in mind that deliberately misleading users
may lead to the removal of your application from RuStore.

6. App name, descriptions, icon and screenshots

6.1 App name and descriptions, including the revision history, must not contain:

● Avoid using clickbaits: do not use the words "best", "only", "forbidden", "secret", "most" in
headlines and short descriptions. If you use the word "official" to describe your
application, we will ask you to document this status;

We also ask you to refrain from other verbal and graphic ways to mislead the user.

● overt or direct insults, rabble-rousing, obscenities;
● trademarks and intellectual property of others, including logos and names;
● links to third party app stores or storefronts, phishing and irrelevant links.

Before submitting an application for review, use the spell checking services to
correct the description.

6.2 Emoji and special characters are not allowed in the app name and short description
unless they are part of the brand.

If the app name contains an acronym or professional terms and abbreviations,
we recommend that you clearly indicate the purpose of the application in a brief
description.

86

https://help.rustore.ru/rustore/for_developers/Monetization/How-create-paid-product-in-application
https://help.rustore.ru/rustore/for_developers/Monetization/How-create-app-subscription

The application must have the same name both on the storefront and when
installed on the user's device.

6.3 For an app description to be effective, it should adhere to the following guidelines: it
must be written in Russian, clear, consistent, and easily understandable. However, there
may be exceptions when it comes to terms and names. The description should accurately
reflect the features and content that are currently available in the app at the time of
publication.

To ensure a professional presentation, we advise against the use of emojis,
emoticons, or excessive repetition of special characters in the detailed
description. Additionally, it's recommended not to overuse keywords,
capitalization, or any other methods that may excessively draw users' attention
and appear intrusive.

6.4 The following guidelines should be observed for app icons:

- They must not imitate public application icons.
- They should not utilize trademarks or intellectual property belonging to others,

including logos that could potentially mislead users.
- If the app does not have any unread messages or notifications within the

application, it should not display an icon indicating otherwise.

Furthermore, it is crucial to ensure consistency in the app icons across both the
storefront and the user's device once the app is installed.

6.5 Screenshots ought to accurately depict the mechanics and functionality of the app or
game, rather than merely displaying the title, login page, splash screen, or artwork. It is
considered inappropriate to curate a collection of screenshots that solely feature art or
elements unrelated to the application interface.

87

When it comes to gaming applications, screenshots should faithfully represent the current
graphics quality at the specific level.

It is important to refrain from including the following elements in screenshots:

- Interface elements from Android or other apps.
- Functionality that is either not yet implemented or not present in the app.

6.6 Video Requirements:

- it must be directly related to the application (for example, you can upload a trailer,
gameplay recording, etc.);

- it must not contain inappropriate content (see Application Requirements);
- the video must be public;
- the page on which the video is posted must be open to all users. If you add a video from

a page with limited privacy settings, then the video must be moved to a group or public
page with open access.

The video duration cannot exceed 1 minute;

6.7 App layout:

● It is essential to assign the correct category to the application from the provided list.
In the event of an incorrect category selection, the moderator has the authority to
make the necessary changes.

● It is crucial to ensure that the application is labeled with the appropriate age
category. If uncertain about the applicable age limits, please refer to the guidelines
for age classification.

88

https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/category
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/age_restrictions
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/age_restrictions

Age ratings

Age ratings apply to all applications published on the RuStore. Those restrictions help users
understand whether an app contains potentially inappropriate content for a certain age group.

Age ratings are not related to the app target group.

Specify an age rating when publishing an app or a new version of it if the update introduces
potentially inappropriate content for a certain age group. This information will help RuStore
users decide whether to install the application.

How to set an age rating

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Select an application.
4. Select a required app version.

5. Click .
6. Go to the "Age rating" block.
7. Select one of the restriction options from the drop-down list.
8. Click "Save".

89

https://console.rustore.ru/sign-in

90

How to choose an appropriate age rating

The RuStore uses the following age ratings:

Description

3+ Inappropriate for children under 3 years old. Please note that not all apps with this
age rating are designed specifically for children.

7+ Some violence or scary scenes. Not recommended for children under 7 years
old. Please note that not all apps with this age rating are designed specifically for
children.

12+ Moderate violence, scary scenes, obscene content. Not recommended for
children under 12.

16+ Violence or sexual content. Not recommended for children under 16.

18+ High levels of violence, sexual content, references to drugs or alcohol. For
adults only.

Age ratings have nothing to do with a game's complexity. We recommend that parents
should be guided by the age ratings to make sure that the game content is suitable for
the child.

91

How to choose an appropriate category for your app

You can choose a category when publishing your application on the RuStore. The categories
you assign to your app help users discover it on the RuStore.

How to assign a category

1. Open the RuStore Console.
2. Click the "Applications" tab.
3. Click "Add an App".
4. In the window that opens, enter the name of your application.
5. Select the type of your application in the "Type" section: a non-game app or a game. The

non-game apps are located on the main page of the RuStore on the "Applications" tab,
and the games are on the "Games" tab.

6. In the drop-down list, select the main category for your application, taking into account
its features. The application will be placed in the selected category on the store.

7. Select an additional category whenever required. The application will be placed in two
categories on the store at once.

Choose the category that is the most relevant to your app. This will make it easier for
users to find the app.

Category Examples

92

https://console.rustore.ru/sign-in

Health & Sports

● Sports apps;
● Health and active lifestyle;
● Safety instructions;
● Sports news and commentary;
● Account tracking;
● Fantasy sports;
● Sport reviews

Food & Drink

● Cafes and restaurants;
● Delivery services;
● Recipes;
● Wine cataloque;
● Gourmet apps

News

● Newspapers;
● News aggregators;
● Magazines;
● Blogs

Transport

● Navigation tools;
● GPS;
● Taxi;
● Public transport timetables and maps;
● Traffic Rules;
● Driving News

Entertainment

● Interactive entertainment;
● Streaming video, movies and TV shows;
● Music apps;
● Players;
● Broadcasting;
● Reading apps;
● Directories;
● Textbooks;
● Dictionaries

Education

● Study apps; educational materials;
● Dictionaries;
● Educational games;
● Language learning apps

93

Finance

● Banking and payment apps;
● ATM locator apps, tax apps, stock portfolio management apps;
● Financial news;
● Tip calculators

Social

● Apps for couples and friends;
● Social media
● Check-in Apps

Shopping

● Shopping and auction apps
● Gift coupons;
● Price comparison and shopping list apps
● Product review apps

Games

● Arcade;
● Quizzes
● Puzzles
● Racing
● For kids
● AR-games
● Indie
● Casino
● Casual
● Cards
● Music;
● Board games
● Adventures
● RPG games
● Family
● Simulation
● Conversation games
● Sports
● Strategies
● Action

Medical

● Pharmacy apps
● Medication guides;
● Calculators;
● Books for health workers
● Magazines and news about medicine

94

Tools

● Browsers;
● Email management tools;
● Service personal accounts management tools;
● Documents viewing and editing tools;
● Parcel tracking and job search tools

Ads and services

● Search for real estate, mortgages,

requests for renovation, interior design and housekeeping

● Search for work, services and craftsmen
● Booking services, searching for fellow travelers and taxis
● Guidebooks
● Maps
● Local business info;
● Travel planning and tour booking services

Public services

● Receiving public services;
● Documents registration;
● Doctor's appointment
● Requests for certificates and extracts;
● Settlement of taxes;
● Check and payment of traffic police fines

95

RuStore Ratings & Reviews

Users can rate your app or write a review on the RuStore. One user can rate an app only once,
though he is allowed to update his review at any time.

The RuStore Console makes it possible for you to track your app ratings and reviews. We will
also add data analysis tools in a short while.

You can write a public response to a review. This option is given to you so that you can build
better customer relationships. You can:

● thank the user for a good review;
● answer the questions;
● collect user feedback;
● find out about errors in your application.

How to write a response to a review

1. Stay on topic. The answer must be clear, truthful, useful and relevant to the review
content.

2. Be polite. Your goal is to help users find a solution to a problem, not scare them away.
Do not post insults, threats, disparaging or hate speech. Do not provoke users to provide
such feedback.

3. Try to respond to all reviews. This is how you show users that you value their opinion.
The app tends to get higher ratings if the developer responds to the reviews users post
about it.

4. Avoid negative responses even If the user is extremely negative.
5. Try to speed up work with positive reviews, then you will have more time to solve

complex user problems. For example, you can create quick reply templates on your local
computer and paste a ready-made response. There are no built-in templates on the
RuStore yet, but we are going to add such functions in a short while.

6. If you use quick reply templates, try to rephrase it from time to time. You should not
sound like a robot.

7. Do not post advertisements and promo codes for other services or in-app purchases in
the reviews as this is not relevant for users at all.

8. Avoid posting sexual content or obscene language.

If you don’t follow these guidelines we may block your application or the developer
account.

96

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/publishing_and_verifying_apps/dealing_negative_reviews

How to deal with negative reviews

Oftentimes there is a chance to change the user's opinion about your app for the better if you
respond to his or her negative review correctly.

How to deal with negative reviews

1. Avoid one-word answers without apologies. It is next to impossible to comfort an angry
user with a short reply, it will rather look rude and cause much more negative effects.

2. Avoid too much formality. Formal language often makes you sound like a robot.
3. It is important to show your empathy for the user. If there is a real problem in your app,

you need to acknowledge the mistake.
4. Try to help the user in your answers. Avoid using quick reply templates when responding

to negative reviews. You should always consider the context and see if the template
reply is good enough for this very case.

5. Thank the user for error messages in your application. Feedback like this can keep
users on your app.

6. Provide the user with details on every problem solution. Sometimes users don't
understand why you removed their favorite feature. Reasonable answers can also help
to cope with negative feedback.

7. Respond to reviews quickly. The sooner you help a user solve a problem, the more likely
he decides to continue using the app and improve the app rating.

Please contact us if you find biases, swearing or insults in a comment or review. We will try our
best to solve the problem.

97

http://support@rustore.ru

How to capture HAR logs (Google Chrome)

HAR is a log of a web browser's interaction with a site. They are required to solve problems
when using the browser.

To capture HAR logs:

1. Press F12 on your keyboard to open the developer tools window.
2. Select the Network tab.

3. Click to clear the network log.

4. Check the boxes in the "Preserve log" and “Disable cache" fields.

5. Repeat the steps that caused the problem.

6. Click to save HAR logs.

98

7. Select a destination folder to save the logs.
8. Click "Save".

HAR logs will be collected and saved to the specified folder.

99

Monetization

Follow the steps below to enable monetization:

1. Fill out an application for monetization.
2. Set up the RuStoreSDK to connect payments.
3. Create subscriptions or one-time purchases.

100

How to enable monetization on the RuStore

Enable monetization to sell in-app products and subscriptions on the RuStore store. Fill out a
monetization request and sign it with EDS.

EDS is an electronic signature issued by the Federal Tax Service for your company. If
you do not have an e-signature, contact a CEO, chief accountants, lawyers, HR
specialists or procurement coordinators. Make sure that the employee with an EDS is
entitled to sign financial documents. If in doubt, show them our Terms of Service.

Monetization is available only to legal entities/individual entrepreneurs and application
owners.

How to create and sign a request

Install the CryptoPro plugin to sign the request.
1. Open the RuStore Console.
2. Click the "Applications" tab at the top of your screen.
3. Select "Subscriptions" in the left side menu, then go to the"Monetization" section.
4. Click "Fill out the form".

If you accepted the terms before 12/22/2022, re-sign your application with an electronic
signature.

5. Fill in the data in the pop-up window.
6. Click "Save and Continue".
7. Read the payment terms for developers.
8. Click "Create and Sign the request".

101

https://help.rustore.ru/rustore/legal_info_en/non-resident_developers_offer
https://console.rustore.ru/sign-in

Select a signing certificate. The certificate must be issued on behalf of your company — we will
check that the specified TIN matches the TIN of your company.

You can check your TIN in the certificate properties: in the operating system tools or in a
certificate program (for example, CryptoPro).

Click "Sign a request". It may take a few seconds to sign your request.

Once there, you can download the approved monetization request. Click "Download a
PDF-request". Request example

102

https://drive.google.com/file/d/1-ftoptjpLRV8AyUUkRzusEvfY-63oGgo/view

103

Test payments

Background

You can now test payments for subscriptions and in-app billing in your apps. The test purchase
is carried out as a regular payment, though using test bank cards.

Functionality
The Test Payments function provides the following options:

● Test mode control via RuStore Console.
● Testing of payment scenarios in your app, which is carried out in an isolated test

environment using special test cards and without affecting the release app version.
● View test payments history in RuStore Console.

Technical specifications
● You can perform testing before publishing an app version to all users.
● In test mode, you can purchase the same products and subscriptions that were added to

the release app version. At that, it is not necessary to publish them.
● You can test the purchase of non-consumable items repeatedly (for example, access to

the full app version or a skin in a game). To do that, you can return the payment via
RuStore Console, and then make a purchase again in the application.

● In test mode, special parameters are applied to subscriptions. They are independent of
and do not affect the settings you select for the release app version. These technical
features are designed to simplify and speed up testing.

The parameters in the table below are the same for all subscriptions in test mode.

Parameter Value

Maximum number of subscription charges. After completing

the specified number of debits, the subscription is

automatically closed

12

Period between subscription charges 10 mins

Frequency of resetting the free and starting period (purchase
of subscriptions with a free and starting period). After the
reset, you will again be able to purchase a subscription for
free or at the initial price. This way you can test payment for a

Once in 3 hours

104

https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/Monetization/How-create-app-subscription
https://help.rustore.ru/rustore/for_developers/Monetization/How-create-app-subscription

subscription several times under special conditions.

Restrictions

● The application owner is the only user who can test payments. He has exclusive access
to the Test Payments section. Options to add other testers are now under development.

● Testing of a paid app purchase is not available in RuStore.
● The RuStore app does not display the history of test purchases and test subscriptions.

This means that test subscriptions cannot be canceled or renewed.
● You can pay for test purchases using test bank cards only.
● To test payments, at least the first app version must be moderated.

Before you start testing payments
● Integrate the SDK that supports the payment testing function into the tested app —

RuStore SDK billingclient 3.1.0 or higher.
● Make sure that the Android device on which you plan to test your app has RuStore

version 1.29 or higher installed.
● Make sure that your company is not blocked, that it has monetization enabled, and

supports payment functionality in the app. You can set up subscriptions and paid
products in RuStore Console, but not publish them to users.

See also

- How to enable monetization
- How to create a paid in-app product
- How to create an app subscription

Enable Test Mode
You can test payments after moderation is completed and before you publish a new app
version. You can also test purchases if an app has already been published.

Testing mode is enabled for the tester in the selected app only. At that, the same user will make
real purchases in other applications. Besides, all other users in this application will make real
purchases as well.

Test mode is disabled by default.

To enable test mode:

105

https://help.rustore.ru/rustore/for_developers/Monetization
https://help.rustore.ru/rustore/for_developers/Monetization/How-create-paid-product-in-application
https://help.rustore.ru/rustore/for_developers/Monetization/How-create-app-subscription

1. Open RuStore Console.
2. Select Applications from the top menu.
3. Go to the Monetization → Test Payments tab.
4. Switch to the Testers tab.

If the tab displays the Add yourself to the list of testers window, click Become a
tester.

5. Enable the switch in the Test Mode column.

Upon turning on the test mode, the tester will make test purchases in your application, and
purchases of products that have not yet been published will become available.

Test in-app purchases

To apply the changes after switching test mode, you must either wait a few minutes or restart
your app if it was open.
Follow the steps below to test payments:

106

https://console.rustore.ru/sign-in

1. Turn on test mode.
For the changes to take effect, you must either wait a few minutes or restart your
application if it was open.

2. If you are not yet authorized in RuStore on the current device, log in via a VK ID you
used to sign up in RuStore Console as the app owner.

See also

- How to view your VK ID in RuStore Console
- How to log in to RuStore app with a VK ID

3. Open an app on your device, or install it if you haven't already.
4. Make a purchase. For example, subscribe.

During payment, a payment window with the Test purchase label will appear.

Note. If the Test Purchase label does not appear, it means that you are making a
purchase not in the test environment, but in the release app version. Make sure that test
mode is enabled and that you used the correct VK ID to log in to RuStore.

5. Add one of the test bank cards and select it for payment. Once added, this card will
be saved in the test profile and further purchases with this card will be available in
one click.

When your account is in test mode, use test cards only. If you try to pay for a
purchase with a real bank card, an error occurs.

107

https://help.rustore.ru/rustore/for_developers/acc_developers/VKID
https://help.rustore.ru/rustore/for_developers/acc_developers/VKID

Note

- Use different test cards to test both successful and unsuccessful payment
scenarios. For example, simulate an error when the payment amount exceeds
the limit on a bank card.

- If you need to test the grace and hold periods, use a test card with a balance of 1
kopeck. Using this card you can buy a subscription with a free period. After the
end of the free period, there will be one unsuccessful charge attempt, and then
the subscription will immediately switch to the grace or hold period, if they are
preconfigured for this subscription.

For more details about periods, see How to create an app subscription.

6. Click Pay.
7. Check if the payment was successful and if your app has processed the purchase.

If the payment was successful, but you still have no access to the purchase, check the
implementation in your app. For other problems with testing scenarios, contact support
support@rustore.ru.

Note. When Test Mode is enabled, 'Get Purchase Information' and 'Get Shopping List' methods will
only return test purchases for that user.

Server validation of test payments and subscriptions
Using API requests, you can retrieve:

- Test payment details;
- Test subscription details;
- Test subscription status;
- Confirmation of subscription availability.

Before using RuStore API, create a new key and specify the methods for testing.

108

https://help.rustore.ru/rustore/for_developers/Monetization/How-create-app-subscription#advanced-settings
mailto:support@rustore.ru

Test Payments History
To view the history of test payments:

1. Open RuStore Console.
2. Select Applications from the top menu and open the app in which the test purchase

was made.
3. Go to the Monetization → Test Payments tab.

The Payment History tab displays all payments made in test mode. In terms of functionality, this
section is similar to Payment Management, which displays user purchases made in the release
app version.

The Payment History tab features:

● Search for a test payment by account number and order number.
● Detailed information for each payment by clicking on it.
● Payment return to retest the purchase of a non-consumable item. To do this, click on the

payment, and then on the Return payment button.

Disable Test Mode

109

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/Monetization/how-to-manage-payments

Once payment testing is complete, you can disable test mode. This is not necessary; you can
remain in test mode whenever so required.

1. Open RuStore Console.
2. Select Applications from the top menu.
3. Go to the Monetization → Test Payments tab.
4. Switch to the Testers tab.
5. Deactivate the switch in the Test Mode section.

Once you disable the test mode:

● The tester starts making real in-app purchases.
● All payments made in test mode are saved in RuStore Console on the Payment History

tab.
● Purchased paid products remain available to your account the next time you turn on test

mode.
● Test subscriptions will be disabled automatically after 12 charges.

Further steps

Once you've tested payments to ensure they operate properly, you can publish subscriptions
and paid items to your app, and then publish a new app version.

110

https://console.rustore.ru/sign-in

Test Bank Cards

To test purchases, you can use the following test cards.

Always successful

Card number 4111 1111 1111 1111

ECI 05

CVC\CVV 123

Expiration date 2024/12

3-D Secure verification code 12345678

Card number 5100 0000 0000 0008

ECI 05

CVC\CVV 123

Expiration date 2024/12

3-D Secure verification code 12345678

The buyer is offered to select the 3-D Secure verification result.

111

Card number 2201 3820 0000 0013

ECI 02

CVC\CVV 123

Expiration date 2024/12

Returns errors

After three unsuccessful payment attempts, the payment will be returned to the RuStore payment
system with a payment error.

Card number 5100 0000 0000 0180

ECI 00

CVC\CVV 123

Expiration date 2024/12

Card number 4444 4444 4444 4422

CVC\CVV 123

Expiration date 2024/12

Card number 4444 4444 1111 1111

CVC\CVV 123

Expiration date 2024/12

Card with 1 kopeck balance

Card number 4954 8493 9714 9582

CVC\CVV 123

Expiration date 2024/12

3-D Secure verification code 12345678

112

Monetization for foreign companies on RuStore

Foreign companies that are registered within RuStore can now enable monetization and receive
income from both paid applications or in-app purchases, including subscriptions.

Monetization is available under the terms of a standard Additional agreement. The actual settlement
currency will be displayed in the form when submitting the monetization request.

Create and fill out a monetization request

1. Open the RuStore Console.
2. Click the Company tab at the top of your screen.
3. Select Monetization in the left side menu.
4. Then click Apply for monetization.

113

https://help.rustore.ru/rustore/legal_info_en/add_agreement_form
https://console.rustore.ru/sign-in

5. Fill in the data in the new window.
- General info. The Trade and legal name field is filled out by default

according to your constituent documents. If the data is incorrect, contact
support and submit a new request once you fill in the correct data.

Note. We may ask you to verify your rights to the specified trade name. You are not
required to have your rights legally registered, however, in this case, we will ask you to
ensure that the use of this trade name does not violate the rights of third parties.

1. Signatory differs from company owner.

If the representative is different from the company owner on RuStore, fill in the information
according to the representative authority document. Attach the decision on appointment,
power of attorney, etc. Make sure that the person who will sign the Additional agreement on
behalf of your company is indicated here.

114

https://help.rustore.ru/rustore/legal_info_en/add_agreement_form

2. Company information
- Make sure that Tax number and Legal address match the information in

your constituent documents.
- If the legal address does not match the actual one, you must also indicate the

actual address where the company operates.

115

3. Contacts for user feedback

Note. The RuStore support service can send these contacts to users or publish them on the app
page.

- When filling in the Contact person section, specify the up-to-date contact
details so that users can get back to you quickly regarding app support, as
well as financial claims (refund / payment cancellation requests, fraudulent
payments notifications).

- The Phone Number and Email sections are intended for internal
communications with RuStore and will be visible to users. Please enter the
international phone number in the Representative number field.

- You can also specify the preferred method of communication and add a link
to instant messengers, a feedback form, or another tool used to receive
feedback from users (optional). We also recommend checking the availability
of this tool for users from the Russian Federation.

116

4. Contract information
- Company's chief accountant full name.
- Accounting statements: income statement, balance sheet.
- Documents confirming tax residency. A tax residency certificate is provided to

avoid double taxation. Going forward, we will ask you to update this
document annually.

117

5. Bank details.
- Provide the company bank account details in either a Russian or foreign

bank, where the settlements will be processed.

Note. If there is no currency listed which would be convenient for you to make payments,
please contact support@rustore.ru and we will consider your offer.

118

- If you want to make payments through a specific correspondent bank, please
specify the required details in this section. We will send your income to these
details for further transfer to you. Otherwise, we will transfer your income to
the details specified above through our standard correspondent bank.

119

The Additional agreement outlines the process for currency conversion during payment.

Note. RuStore charges a fee on paid apps and in-app items (subscriptions, in-app purchases). The
fee for non-residents is 15%. In cases where RuStore is required to be a tax agent of a non-resident,
apart from the fee, the amount of taxes payable in accordance with the legislation of the Russian
Federation will be withheld.

6. Click Submit a request.
7. Check the request text and click Go to submit. Your monetization request will be

reviewed and approved by a moderator.

Note. You can withdraw the request at any stage and make the necessary changes
whenever so required, and then re-submit for review.

Attention. In case of discrepancy, we will notify you by email and ask you to attach the
correct documents, while we reserve the right to reject the request and / or either block the
monetization option in exceptional circumstances.

Once you have submitted the moderation request, we will send the Additional agreement to
your email. Read the agreement and sign it to enable monetization.

120

https://help.rustore.ru/rustore/legal_info_en/add_agreement_form
https://help.rustore.ru/rustore/legal_info_en/add_agreement_form

Note. Please note that the Supplementary Agreement must be signed by the person whose
information you have indicated in the Company Representative section above.

Once monetization is enabled for you, you will be able to set up subscriptions, in-app
products and publish paid apps. You will receive a monthly report on accepted
payments. We will transfer payments to you in accordance with the Additional agreement.

Payments are scheduled once a month at most, provided that the minimum amount has
been reached since the previous payment.

121

https://help.rustore.ru/rustore/legal_info_en/add_agreement_form

Payments management
In RuStore Console you can monitor payments per monetization-enabled app.

Viewing payments information

1. Open RuStore Console.

2. Select Applications in the top menu.

3. From the menu on the left select Monetization > Payment management.

The payment information table is displayed only if the app was purchased at least once. The
table contains:

● date and time of a purchase;
● invoice number and order number;
● payment card number and phone number from which the payment was made;
● purchase amount;
● invoice status.

Only subscription payments have order number. Order number is the same for all payments of a
subscription.

Click on a payment to see the detailed information.

122

https://console.rustore.ru/sign-in

Payment search

To search and view payment information, follow these steps:

1. Open RuStore Console.
2. Select Applications in the top menu.
3. From the menu on the left select Monetization > Payment management.
4. Enter the invoice number in the search field. The payment amount and status

information will be displayed. Select one of the identifiers as a search criteria — invoice
number or order number. After that, enter the invoice or order number in the search field
accordingly. In the search results, you'll see all in-app payments that match the selected
search criteria.

123

https://console.rustore.ru/sign-in

A payment can have one of the following statuses:

Processing: the money on the buyer's payment card is put on hold. The purchase is waiting to
be confirmed.

Canceled: the money on the buyer's payment card is released from hold. The purchase is
canceled.

Paid: transaction confirmed, the funds are debited from the buyer's account.

Refunded: the funds are returned to the buyer's account. The refund time may be up to 5
business days.

Payment return

To return a payment to the buyer, follow these steps:

1. Open RuStore Console.
2. Select Applications in the top menu.
3. From the menu on the left select Monetization > Payment management.
4. Select the invoice that requires the payment return.

124

https://console.rustore.ru/sign-in

5. In the pop-up window, push Return payment to open the payment return page.

Review the information in the displayed window and select Return payment once more.

caution

Payment return does not deactivate the app or subscription.

125

After payment return is processed, the purchase status is changed to Refunded. The previously
paid amount will be returned to the buyer's account.

App Statistics

RuStore Console features various statistics sections, providing insights into crucial data
such as:

- app page views and downloads,
- amount of profit received and returns, and
- number of push notifications sent to users.

These statistics will help you gather essential information to boost your app's functionality
and make sure it is user-friendly. Additionally, it allows you to assess sales dynamics and
make informed decisions, i.e. to adjust the monetization strategy if needed.

Downloads statistics

126

You can view your app statistics on RuStore Console.

Note. A user should be logged in to RuStore Console to view statistics.

How to view your app download statistics?

1. Open RuStore Console.
2. Go to Applications.
3. Click App Statistics in the side menu.

The statistics tab displays the following items:

● A table with general app statistics, containing:
○ Total number of app views in the RuStore interface (Web and mobile app);
○ Total number of app downloads in the RuStore interface;

● A table with statistics on OS versions of RuStore users, containing:
○ RuStore user OS version name;
○ Number of app downloads on a device with a specific OS version;
○ Percentage of app downloads on a device with a specific OS version;

● A table with statistics on device models of RuStore users, containing:
○ RuStore user device model name;
○ Number of app downloads on a particular device model;
○ Percentage of app downloads on a particular device model;

You can sort table elements with statistics by OS versions and device models whenever so
required:

● Click on the sort icon once – all elements will be sorted from highest to lowest value;
● Click on the sort icon twice – all elements will be sorted from the lowest to the

highest value;
● Click on the sort icon three times – the list of items will return to its default state.

To use sorting more efficiently, you can use several filters at the same time.

127

https://console.rustore.ru/sign-in

Monetization statistics

You can also view financial data to evaluate the dynamics of sales, including specific
content or subscriptions. Revenue data is based on transaction volumes.

General requirements

To view monetization statistics, make sure to comply with the following conditions:

128

● at least one monetization type has been enabled and transactions have been made
previously.

● the user is entitled to view statistics;
● the user must be logged in to RuStore Console.

How to view monetization statistics?

1. Open RuStore Console.
2. Go to Applications.
3. Then go to Monetization → Monetization Statistics.

On the Monetization Statistics page you can view total income and returns from all sources.
Sources refer to the type of monetization option enabled for the app:

1. Paid applications: income from paid app downloads;
2. In-app products: income from transactions with in-app products;
3. Subscriptions: income from recurring payments for using a subscription.

For returns and revenue statistics, the following data type is displayed:

● Amount, indicating currency;
● Number of transactions;
● Percentage of income.

Displayed if several monetization options enabled (for example, subscriptions + inn_app
payments)

● Return percentage
● Period refers to a period of time for which you can view statistics. Available values:
● Last day from 00:00 to 00:00;
● Last 7 days including the current day;
● Last 30 days including the current day;
● All-time statistics = from the first transaction until the current day, inclusive.
2. The report is generated at the end of the selected period.

129

https://console.rustore.ru/sign-in

130

Push Notifications Statistics

Here you can view push notifications statistics for all published applications.

Statistics are calculated based on data for each app that has push notifications configured.

How to view push notifications statistics?

1. Open RuStore Console.
2. Go to Applications.
3. Then go to Push Notifications → Push Notifications Statistics.

Statistics on push notifications are displayed one day after the publication of a new app
version.

The statistics page displays the number of:

● all sent push notifications;
● delivered push notifications;
● users who accessed the app by clicking on a push notification.

This data is collected to be viewed by time period: daily, weekly, monthly, or all time.

131

https://console.rustore.ru/sign-in

Monetization report

Sample RuStore Software Distribution Agreement Completion Report

Companies that have enabled monetization receive a monthly monetization report by mail.
Report example.

Report fields description

Field Description

Company's debt as of the beginning of the
reporting period, RUB

Payments accepted from your app users, but not received as
calculated at the end of the previous reporting period

Debt payable to the Company as of the
beginning of the reporting period, RUB

Always 0 because we compensate our agents for your debt to
them in accordance with the settlement scheme. If you have a
debt to the Company as of the previous report, we will send you
an invoice to be paid within 3 business days from the date of
receipt

132

https://cloud.mail.ru/public/HgtQ/8ECAmU9zK
https://cloud.mail.ru/public/HgtQ/8ECAmU9zK

Total amount of payments received from
Users within the reporting period (including
refunds), RUB

The amount received from your app users during the reporting
period net of refunds made in the reporting period

Amount transferred within the reporting
period, RUB

The amount of your revenue transferred to your bank account
within the reporting period (user payments net of refunds and
commissions payable to RuStore and agents)

Commissions payable by the Company
within the reporting period, RUB

Commissions payable to RuStore and agents

Company's debt at the end of the reporting
period, RUB

Payments accepted from your app users, but not received as of
the end of the current reporting period

Amount payable at the end of the reporting
period, RUB

Amount payable to the RuStore, if the refunds exceeded the
amount of payments received from users as of the reporting
date (revenue payment date). In accordance with the payment
scheme, we will compensate the agents for the amount of your
debt and send you an invoice to be paid within 3 business days
from the date of receipt

133

How to create a paid in-app product

1. Open the RuStore Console.
2. Click the "Applications" tab at the top of the screen.
3. Select "One-Time Purchases" in the left side menu of the "Monetization" section.
4. Click "New Item" in the center of your screen.
5. Fill in the user details and technical specifications about the product.
6. Click "Create" in the lower left corner of the screen.
7. Click "Publish". Click "Edit" to edit the product info at this step.
8. Once there, click "Publish" in the pop-up window.

134

https://console.rustore.ru/sign-in

How to create an app subscription

Here you can create a subscription so that users can buy a subscription to your application on
the RuStore store:

1. Open the RuStore Console.
2. Go to the "Applications" tab at the top of the screen.
3. Select "Subscriptions" in the left side menu of the "Monetization" section.
4. Click "New Subscription" on the middle of your screen.
5. Fill in user details and technical specifications about the subscription, as well as

additional settings whenever so requested.
6. Click "Create" in the lower-left corner of the screen.
7. Click "Publish". Click "Edit" to edit the product info at this step.
8. Once there, click "Publish" in the pop-up window.

Recurring payments are debited within 8 hours before subscription ends. For example, if a user
subscribed at 16:00, then subsequent regular payments are debited between 08:00 and 16:00.
The terms of debiting should be regulated by the Developer documentation.

135

https://console.rustore.ru/sign-in

Ads and promotion

How to add a "Download from the RuStore" button

You can use the "Download from RuStore" button to tell users about your app.

Two-color logo version:

Download: SVG, PNG Download: SVG, PNG

Single color logo version:

Download: SVG, PNG Download: SVG, PNG

Use case:

136

https://help.rustore.ru/pic/f/d/fd8f56e233fb370a28c81fa6a916abbf.svg
https://help.rustore.ru/pic/e/d/edc2a045e17e4971c7cca77c7fde4b66.png
https://help.rustore.ru/pic/d/9/d9aa347d240d14f24360571598665230.svg
https://help.rustore.ru/pic/d/2/d2ca5f4870b8d8f4e42e5ab7fa288629.png
https://help.rustore.ru/pic/7/d/7d9ecde2dda11cf910e3de9d32779507.svg
https://help.rustore.ru/pic/c/9/c90da111977f89486025d90e0a1b7a2e.png
https://help.rustore.ru/pic/3/9/39dbaa93aa078d5dfc88a3d09c777427.svg
https://help.rustore.ru/pic/d/7/d781c505a907e6353ef6869c376ca298.png

Follow a few simple steps:
1. Download the "Download from the RuStore" logo.
2. Upload it to your server.
3. Find your application on the RuStore website and copy the bundle_id from the link.

Link example: https://trk.mail.ru/c/me10h4?bundle_id=com.vkontakte.android

4. Add code to the website:

<img src="#Link to the button image" width="188" height="63"
alt="Download from RuStore">

The recommended image size is 188 x 63 px.

137

https://trk.mail.ru/c/me10h4?bundle_id=com.vkontakte.android

Requests for in-app events
In- app events are a means to motivate users to install your app, for example: sales (for
online stores), special offers or in-game events, and other limited offers.
RuStore Console enables you to submit a request for an event that will be displayed in
your app. You can submit an event request only for an app with a published version.
To manage event requests log in to RuStore Console.
The processing time for submitted requests is up to 14 days. If we don't get in touch
with you within 14 days, your request was not approved by RuStore editors.
The maximum amount of active event requests is 5.
Create request
To create an event request, follow these steps.

● In the navigation menu on the left side select Promotion > Event requests.
Depending on whether you already have created requests or not the following
page will open.

● No requests
● Submitted requests
● Click or tap .

The event creation form will be displayed (see the image below).

● Provide necessary data (please, refer to the table below).

Parameter Description

Event name Enter a name for your event (up to 34 characters).
Use a short name that captures the essence of your event.

Event type

Select from the list:

● New season;
● Special offer;
● Tournament;
● Sale;
● Major update;
● Special event;
● Premiere;
● Live broadcast.

Start
date/Time

Start date and time of the event.
Let the user seize the opportunity to take advantage of the offer
instantly.

138

End
date/Time

End date and time of the event. Must be later than the current date
and time.

● Maximum event duration is 90 days.
● Minimum event duration is 24 hours.

The duration of the event shouldn't be too long so that the user
does not postpone the opportunity.

Brief
summary

Enter a brief description of the event — up to 32 characters.

● In this brief description we recommend you to call to action
(e.g.: “Buy with 90% discount”/“Only in RuStore” etc.).

● Be polite to users to be consistent with the tone of voice of
RuStore.

● If by taking part in an event the user gets special usage
privileges, be creative to emphasize that — make it a call to
action.

Description

Provide a detailed event description — up to 448 characters.

● The description, besides the event details, should contain
the context of the corresponding event.

● The description should be spacious and include key
advantages of the event or conditions of participation (how to
activate promo code/in which section to look for a gift
box/where to get the registration gift, etc.).

Cover

Use the link to set the path to the file or drag and drop the file in the
designated area:

● format: JPG or PNG;
● size: up to 3 MB;
● aspect ratio: 4:3;
● resolution — 2880x2160 px.

The image must be of good quality.
Instruction for designers.

Cover color

Specify a HEX color code for automatic gradient for the cover. The
color matching the specified code will be displayed in the square
below.
We recommend you to specify the code that matches the color of
your image.

139

Text color

Specify text color — white or black.
Please, make sure that the text is easily readable against
background: if the background is black, then, select white for text, if
the background is white, then, the text must be black.

Request
processing
priority

Select the processing priority for your request:

● Standard — set by default standard processing priority;
● High — high processing priority.

High priority can be set only for 1 submitted event request for an
upcoming event.

Phone
number

Specify your contact phone number in the following format
+79876543210.

E-mail Please, specify your email address so that we could contact you if
your request is approved or to clarify possible questions.

Comment
for
moderator

If there is any additional information that has be taken into account
regarding your event, specify it in this field.

● Click or tap .

After sending the request, on the specified address you will receive an email confirming that the request is received
by the RuStore editors. If there's no email, please, check your SPAM folder.
An approved event will be visible on your app card at the specified time period. Also, your event may be included in
«Interesting», «Games», or «Apps» selection if picked by the RuStore team.
View request
To view a created request, follow these steps.

● From the navigation menu on the left, select Promotion > Events.
The list of the created requests will be displayed.

● Select the request you need.
The selected request page with the detailed information will be displayed.

VK Ads on RuStore

Now developers have the opportunity to promote their applications in RuStore with the help
of advertising.

How to set up an advertising campaign via VK Ads

140

1. Open the VK Ads in your browser and log in.
2. Go to the Campaigns section.
3. Click Create Campaign.

4. Click Mobile App. Select an advertised app from the list or link a new one through
VK Ads.

To get started for the first time, you need to add an app and set up integration with the
tracker. For more details, see How to add an application through VK Advertising below.

141

https://ads.vk.com/hq/apps

5. Set up an advertising campaign.

VK Ads provides many tools and technologies so that you can customize your advertising
as accurately as possible. See the Guide for more details on setting up an advertising
campaign.

How to add an app via VK Ads

1. Open VK Ads.

142

https://ads.vk.com/help/articles/app_campaign
https://ads.vk.com/hq/apps

2. Log in using one of available methods or create a new account.
3. Go to Mobile Applications and click Add Application.

4. The add application form will open. Enter the link to the app in RuStore and click
Add.

143

https://ads.vk.com/help/articles/new_account

To find the link to your app, open the web version of the RuStore storefront.

The application status will change to Checking access.

5. Start setting up integration with the tracker.

RuStore also allows launching advertising campaigns on VK Ads via direct links without any
third-party tracking systems. To launch campaigns from RuStore, read the Guide.

Where your ads can appear

Advertising applications are available in Featuring. At that, ads are displayed to both
authorized and unauthorized users.

Featured Ads on RuStore:

An advertising banner appears when a user goes to the Featuring section. To go to the
application page, the user can click on the banner.

144

https://www.rustore.ru/
https://ads.vk.com/help/articles/rustore_direct_links

Ads in Search results:

The ads will also appear at the top of the list in search results.

145

By clicking on Install, the advertising application starts downloading in the same way as
other applications from the search results.

146

Tools
 General information
Use “Tools” in RuStore Console to connect developer tools to your apps.

Tools provide developers with additional options for app management, error detection,
and integration with various services.

Only users with owner permissions can connect a tool.

 Connecting a tool
1. Select the “Tools” tab.
2. Select an instrument of your interest from the side menu and click “Connect”. The

system will display the following result message.

If an error occurs, contact our technical support.

From the main console page the selected tool will be connected to all of your apps that
have at least one created version in RuStore Console.

You can also connect a tool from the side menu of an app card. In this case the tool will
be connected only to the selected app.

147

https://console.rustore.ru/waiting
https://console.rustore.ru/waiting

After connecting the tool you'll be able to see all connected apps in the tools section
and switch directly to the app interface.

On connecting, an owner's account is created in a particular service in RuStore. To
configure access for other employees of your organization after connecting a tool,
switch to the service and configure access control in the tool interface.

After connecting the tool you'll be able to see all connected apps in the tools section
and switch directly to the app interface.

On connecting, an owner's account is created in a particular service in RuStore. To
configure access for other employees of your organization after connecting a tool,
switch to the service and configure access control in the tool interface.

 RuStore Remote Config
 General information
RuStore Remote Config is a tool for managing mobile app configuration. It allows to
implement feature toggles (or feature switchers) and manage them from a convenient
GUI.

Info
You need a registered developer account to work with RuStore Remote Config.

 Quickstart
 SDK installation and app configuration;
 Creating conditions for enabling parameters;
 Description of the Remote Config parameters.

148

 Additional information
 User permissions;
 How the service works.

 How the service works
On creation of a new app its code needs to be configured in the way that will allow to
change its parameters using the config settings. That is why Remote Config will not be
able to work with just any app: you have to adapt your code for working with RuStore
Remote Config.

On app start SDK sends a request to RuStore Remote Config and receives a response
with a configuration in JSON that contains a set of parameters. Together with the
configuration (parameters that define how the app behaves), the response includes the
configuration hash. The app stores this hash and includes it in further requests to
Remote Config as one of the parameters.

Remote Config compares the received hash with the hash of the configuration that
needs to be returned for this request. If the hashes match, the service replies with the
"not modified" response instead of the configuration. This is done to avoid sending
unmodified configuration to the client.

After receiving the configuration the modified interface and new features obtained from
RuStore Remote Config are added on the device.

Note

The app applies the received configuration only after restart. The users will not see the
changes in real time.

 SDK and app configuration
 General information
SDK Remote Config is a cloud service that allows to change the behavior and look of
your application without requiring the user to update the app. SDK encapsulates the
request for configuration from the server, cashing, and background update. It has a
handy API for retrieving data.

 Key features
 SDK allows to select the most suitable mechanism for configuration update.
 With it you can specify the percent of the app users that will receive the

configuration.
 You can pass additional information to narrow the list of users that will receive a

particular configuration. You can even create configurations for particular users.
 Has a set of SDK performance callbacks that you can use for analysis.
 Has minimum external dependencies.

149

 Connecting to project
Connect repository (see below).

build.gradle

repositories {
maven {

url = uri("https://artifactory-external.vkpartner.ru/artifactory/maven")
}

}

 Connecting the dependency
Add the following code to your configuration file to add the dependency.

build.gradle

dependencies {
implementation("ru.rustore.sdk:remoteconfig:0.0.2")

}

 How to create and initialize RemoteConfigClient
RemoteConfigClient initialization must be done during Application.onCreate() as by the
background sync start the SDK must be already initialized.

 Creating RemoteConfigClient

val remoteConfigClient = RemoteConfigClientBuilder(appId = AppId("your_app_id"), context =
applicationContext).build()

Using RemoteConfigClientBuilder you can install additional parameters that can be
used to retrieve a particular configuration.

Recalling RemoteConfigClientBuilder.build() will throw the
RemoteConfigClientAlreadyExist error.****

On calling the RemoteConfigClientBuilder.build() method a RemoteConfigClient
instance is created and a singleton is created. You can retrieve the created instance
using the following method.

RemoteConfigClient.instance

Access through a static variable before the RemoteConfigClient instance is created via
RemoteConfigClientBuilder.build() will throw the RemoteConfigClientNotCreated error.

 RemoteConfigClientBuilder optional parameters

Parameter Description

OsVersion Condition in the configuration tool: Os Version Allows to compare

150

Parameter Description

OsVersion against the value set in the interface. By default OsVersion is
not passed, in this case the default configuration will be returned.

DeviceModel

Condition in the configuration tool: Device Model
A DeviceModel Allows to compare DeviceModel against the value set in
the interface. By default DeviceModel is not passed, in this case the
default configuration will be returned.

Language

Condition in the configuration tool: Language
Allows to compare Language against the value set in the interface. By
default Language is not passed, In this case the default configuration will
be returned.
To pass Language, implement ConfigRequestParameterProvider.

Account

Condition in the configuration tool: Account
Allows to compare account against the value set in the interface.
Condition in the configuration tool: Account Percentile
Allows to broadcast the configuration to a specified percent of users
based on the account value.
Condition in the configuration tool: Interval Account Percentile
Allows to broadcast the configuration to a specified percent of users on a
specified day based on the account value.
To pass Account, implement ConfigRequestParameterProvider.

DeviceId

Condition in the configuration tool: DeviceID
Allows to compare DeviceId againste the value set in the interface.
Condition in the configuration tool: DeviceID Percentile
Allows to broadcast the configuration to a specified percent of devices
based on a on the DeviceId value
Condition in the configuration tool: Interval DeviceID Percentile
Allows to broadcast the configuration to a specified percent of devices
on a specified day based on the DeviceId value.

AppVersion Condition in the configuration tool: App Version
Allows to compare AppVersion against the value set in the interface.

Environment

Condition in the configuration tool: App Environment
Allows to compare Environment with the value set in the interface
Environment can take the following values: Alpha, Beta, Release.
It is a convenient parameter for testing of the configuration on different
app builds.

AppBuild Condition in the configuration tool: App Build
Allows to compare AppBuild against the value set in the interface.

151

 UpdateBehaviour
UpdateBehaviour — this parameter defines SDK behavior. The default value of the
RemoteConfigClientBuilder instance upon creation is UpdateBehaviour.Default with a
15 minute sync interval.

You can set a different SDK behavior the following way.

remoteConfigClientBuilder.setUpdateBehaviour(UpdateBehaviour.Actual)

Difference UpdateBehaviour

152

UpdateBehaviour Description

UpdateBehaviour.Actual

With this type of initialization, every configuration
request is made by a request to the server.
This update type ensures the configuration is
up to date, however, the speed of the
configuration retrieval will depend on the
network speed.
This type of initialization cancels the background
update.

UpdateBehaviour.Default(minSyncInt
erval)

With this type of initialization, the configuration
request is made from the local store that is
updated at specified intervals.
If it is the first initialization (the local store is
empty), a request to the server is made—the
duration of this request depends on the network
speed. Configuration access will wait for the
initialization to complete.
This type of configuration does not guarantee
that during the process lifetime configuration
retrieval will return the same result, as there
can be configuration sync in the background.
This initialization type starts background update.

UpdateBehaviour.Snapshot(minSync
Interval)

With this type of initialization, the configuration
request is made from the local inMemory storage.
inMemory-storage will receive the result of the
request from the permanent store and save it
until the end of the process lifetime.
If it is the first initialization (the local store is
empty), request to the server is made—the
duration of this request depends on the network
speed. Configuration access will wait until the
initialization in complete.
This type of configuration ensures that during
the process lifetime configuration retrieval
will return the same result.
This type of initialization starts the background
update process.

153

http://localhost:3000/developers/tools/remote-config/sdk/synchronization

 ConfigRequestParameterProvider
ConfigRequestParameterProvider implementation allows to dynamically pass
parameters to the server for configuration sync.

Supported parameters: Language and Account.

class ConfigRequestParameterProviderImpl : ConfigRequestParameterProvider {
override fun getConfigRequestParameter(): ConfigRequestParameter =

ConfigRequestParameter(
language = Language(Locale.getDefault().language),
account = Session.id,

)
}

Implementation of the method must be fast and without time-consuming operations . If
the getConfigRequestParameter method takes too long to execute, it may lead to high
latency of the configuration retrieval.

The method call will be done on the RemoteConfig SDK threads.

Implement ConfigRequestParameterProvider the following way.

val provider = ConfigRequestParameterProviderImpl()
remoteConfigClientBuilder.setConfigRequestParameterProvider(provider)

 RemoteConfigClientEventListener
RemoteConfigClientEventListener implementation allows to receive callbacks on SDK
performance, such as end of initialization and permanent storage updates. Listener's
callbacks are called to MainThread.

Implement ConfigRequestParameterProvider the following way.

val listener = RemoteConfigClientEventListenerImpl()
remoteConfigClientBuilder.setConfigRequestParameterProvider(provider)

 RemoteConfigClient initialization
RemoteConfigClient initialization is done asynchronously—you can track the result via
the Task class that is returned by the init() method or via the listener.

remoteConfigClient.init()

 Retrieving configuration from RemoteConfigClient
Receiving configuration from RemoteConfigClient is done by calling the
getRemoteConfig() method.

`remoteConfigClient.getRemoteConfig()`

154

http://localhost:3000/sdk/task-api

If RemoteConfigClient hasn't been initialized, it will be initialized during the first
getRemoteConfig()call—this may take some time. To faster retrieve the configuration,
the RemoteConfigClient initialization must be done beforehand.

The getRemoteConfig() method returns RemoteConfig and is executed asynchronously.
Task may fail. SDK RemoteConfig errors

Upon a successful Task completion, RemoteConfig will become available—this is a
current set of all data received depending on the selected update policy and
initialization parameters. With certain update policies the received configuration will
depend not on the current initialization parameters but on the parameters that were
used during the background sync.

 RemoteConfig class
A RemoteConfig instance is a current set of all data received based on the update
policy selected during the initialization. This instance has a full set of keys that were
received from the server based on the parameters set during the initialization.

 Key availability check

remoteConfig.containsKey("my-key")

This method checks the availability of the key in the current RemoteConfig instance.

 Receiving typed data
The RemoteConfig class has methods for fetching and typifying data.

 getBoolean(key: String): Boolean
 getInt(key: String): Int
 getLong(key: String): Long
 getString(key: String): String
 getDouble(key: String): Double
 getFloat(key: String): Float

These methods may return a RemoteConfigCastException error if the data type doesn't
match the selected method or the value corresponding to the passed key doesn't exist.

 Configuration background sync
Configuration background sync is used with several types of update policies.

The result of a configuration background sync is the update of the current data in the
permanent configuration store for further use depending on the selected update policy.

The minimum allowed interval between background syncs is 15 minutes.

For proper background sync performance, the SDK RemoteConfig initialization must be
done using the Application.onCreate()method.

155

 SDK RemoteConfig errors
All SDK RemoteConfig errors have the RemoteConfigException superclass.

RemoteConfigException descendants.

Error Description

BackgroundConfigUpdateError Thrown in case of an error during the
background sync process.

FailedToReceiveRemoteConfig Thrown in case of an error during the
configuration retrieval call.

RemoteConfigCastException

Thrown in case of incorrect data retrieval by a
key from the RemoteConfig class. The error
may be due to impossibility of conversion to a
type or absence of a value for the passed key.

RemoteConfigClientAlreadyExist
Thrown in case of creation of another
RemoteConfigClient during the process
lifetime.

RemoteConfigClientNotCreated

Thrown in case of an access to
RemoteConfigClient through the static
instance field before RemoteConfigClient
creation.

RemoteConfigCommonException General unexpected error.

RemoteConfigNetworkException Thrown in case of a network error during the
sync.

 Conditions
Conditions define how your app will be updated. For example, “Android version 11 and
later and the user interface language is “English”. A condition can be called “targeting”
or “segment”. The creation of a condition itself doesn't affect anything, it must be
applied to a parameter—Remote Config parameters.

Conditions are used to apply parameters to a certain portion of the users. See
Conditions for the full list of conditions. Conditions are also displayed in the drop-down
list that is available during configuration of a parameter.

Warning

Do not edit conditions if it is unnecessary and unless you are sure that it will not affect
the users. Especially, if conditions include parameters. It might negatively affect stable
app performance.

156

 Creating a new condition
To create a new condition click the Add Condition button.

In the Name field set a name for the condition. in the Description field specify a
descriptive comment.

Select Atomic conditions, that the condition being created consists of.

Note
All atomic conditions are joined by a logical AND operator. To trigger the condition, the
user must match all of the atomic conditions.

 Atomic conditions
Atomic conditions can be textual or numeric. The text field is filled in without quotes.

157

For textual conditions the following operators are available.

 Exactly matches. Requires an exact match.

Example. The “OS Version exactly matches 9.0.0” will be matched by the
os-version=9.0.0 app query, but not by os-version=9.0.

 Contains — contains the specified substring.
 Does not contain — doesn't contain the specified substring.
 Regexp — matches the specified regular expression.

Caution
When using regular expressions with Golang, check conditions here and during testing.

 Presented in file — matches list elements from a file, maximum file size: 5 MB.
 Not presented in file — matches all users that are not specified in an uploaded

file.

For numeric conditions the following operators are available:

 =;
 != (not equal);
 >;
 >=;
 <;
 <=.

158

https://regex101.com/

List of atomic conditions

Atomic
Condition Description Type Usage examples and comments

OS Version
Operating
system
version

Textual +
Numeric

OS Version <= 9.9

OS Version matches regex

"^1-8$|^9(.d(.d+))*$"

Device
Model

Model of the
device Textual Samsung devices:

Device Model Contains samsung

Language device
language Textual The Russian language on the device

Language matches regex ^ru

Account User
account, Textual

Account exactly matches mrg.test@mail.ru
In this case, if at least one of the connected
accounts is mrg.test@mail.ru, the condition
will be met.

App Version
Mobile
application
version

Textual App Version exactly matches 1.5.3

App
Environmen
t

Alpha, beta,
or release
version

Available
values:
Alpha,
Beta,
Release.

This field's value is set during the SDK
RuStore Remote Config initialization.

App Build Id

Mobile
application
build
identifier

Numeric Users that use builds 22563 and later
App Build Id >= 22563

DeviceID
Percentile

Percentile of
DeviceId Numeric

Used for publishing parameters per % of
users.
Percentile is a number from 0.00 to 99.99.
The number is defined by a function of
device-id. On every device-id RuStore
Remote Config will return a value.
There is an additional field: Salt — you

159

http://localhost:3000/developers/tools/remote-config/.d+
mailto:mrg.test@mail.ru
mailto:mrg.test@mail.ru

should us it whet it is necessary to apply the
parameter to mutually exclusive groups of
users.

Account
Percentile

Same for
accounts Numeric

DeviceID
Interval
Percentile

Calculated
using
DeviceID

Numeric

Allow to publish a feature in intervals.
Example. You took 10% of the users,
specified salt and a 7 day interval. The users
that will see the update will be distributed
across the whole interval: 1/7 of the users
from the selected 10% will receive updates
on every 7-th day.

Account
Interval
Percentile

Calculated
based on
Account

Numeric Same as for DeviceID Interval Percentile.

Random
Percent

A new
percent
value every
time

Show Time
Time of the
config
delivery

Specify the beginning, the end, and the time
zone of the config delivery interval. Use it,
for instance, if on Friday you need to
schedule a launch for Monday or disable a
feature on a certain date.

 The Salt parameter
To distribute the users between different percentiles, the Salt parameter values must be
different.

For example, if you want to enable new features for the same group of users while
publishing using percentage, use the deviceId percentile atomic condition. If you need
every update be available for different users, change the Salt parameter value.

 Approving created conditions
A condition needs to be approved if it wasn't created the app owner or a user with
approval permissions. User roles.

160

 Parameters
In RuStore Remote Config you can add parameters that will define your app's behavior.
They can have different values depending on which condition is executed. During the
app integration its code must be configured with SDK in a way, that this code contains
the parameters that can be changed in the configuration.

Warning

Be very careful while editing parameters to avoid a negative effect on the users and
app stability.

 Creating a new parameter
Click the Create parameter button. A parameter creation screen will show up:

In the Parameter key field, specify its name. Add a comment or description.

Parameter types:

 Boolean — True/False;
 Numeric — digits and numbers;
 String — text (single line);
 Text — text (multiple lines);

161

 JSON — sending configuration.

Warning

There can be only one type of a parameter value.

After a parameter type is selected, add to it previously created conditions

Each parameter can have different values based on different conditions. Conditions are
calculated in the order defined in the parameter stored in RuStore Remote Config. For
example, if the user matches condition “A”, further conditions are not taken into
account. Therefore, using different combinations you can create conditions of any
complexity.

Info

To move conditions, drag the icon

When a parameter is created, it has the New label that indicates that the parameter is
new. This parameter can be deleted without approval as it is in the draft state.

 Testing a new parameter
Upon creation, editing, or deletion of a parameter its status is changed to Pending, that
is, awaiting approval. In contrast to conditions though, you can test parameters before
approving changes. The testing mechanism allows to apply a parameter on a single
device or account to make sure it works correctly.

Testing is an important feature of the system that allows to avoid applying incorrect
configuration values. Testing is based on applying custom atomic conditions to every
possible version of the parameter.

Clicking the Configure test button displays the following window.

162

Tabs at the top match added conditions and the default value of the changed parameter.
On the screenshot above the tested value is the one that is received based on condition
My new condition.

Clicking the Run test button changes the parameter status to Testing—in this status
one you can confirm or reject changes.

Caution

The conditions being added fully replace atomic conditions of the My new condition
parameter. This is done for testing complex scenarios that is difficult to reproduce on the
user's device. For example, it can be a condition that utilizes the app version. You can
replace the source conditions with custom ones and check how the interface looks after
the My new condition condition is executed. In other words, the service allows to
receive any parameter value on the device based on custom conditions.

The first condition is limited by the available choice of types and operations. Only the
DeviceID and Account types are available together with the Exactly matches
operation. This restriction is to prevent from using a too wide range of users for testing.
There are no such restrictions starting from the second condition.

Note, that same Account or DeviceID is applied only to one condition or Default value.
Otherwise, the system will not know exactly with what value to respond, thus, the value
can be arbitrary and constantly changing.

During the deletion of the parameter there are not tabs and the selected atomic
conditions are applied globally. Since the parameter is being deleted, it is important to

163

test the consequences of this action. In this case, particular parameter conditions are
not important as they will be deleted with the parameter (see the example below.

 Applying a new parameter
The parameter is enabled after approval by a user with the sufficient permissions.

 User roles and permissions
Remote config provides flexible access management utilizing its permission distribution
mechanism. Permissions are granted per app.

Permission list and description

Note

The company owner has the full permissions in all company apps.

Permission Available activities

View Viewing parameters, conditions and change log.

Record
Creation, editing, deletion, and rejection of parameters and conditions
and parameter testing. This permission does not allow making
approvals.

Approval Approval or rejection of any changes in the systems.

Granting
permissions Granting permissions to any employee in the system for the current app.

164

 Working with parameters and conditions
Remote Config protects users from unintentional changes of the parameters and
conditions , that's why any change that might affect the app behavior will be sent for
approval. Not all changes require approval. For example, changing a parameter or a
condition description does not affect system behavior that's why such changes are
applied immediately.

 Access and permissions
It's important to note that permissions for making changes are divided — see User
roles.

 Working with conditions
On condition creation it is in the Pending status, that is, awaiting approval.

The interface is different depending on the action type.

 Creating a condition

When a condition is created, it has the New label that indicates that the condition is
new. This condition can be deleted without approval as it is in the draft state.

After approval you can use this condition in parameters.

165

 Modifying a condition

You can compare the old condition with a new one as well as discard changes by
deleting the draft. All parameters will use the source version and ignore the draft
version. On approval, all changes are applied and the user will receive all related
parameters based on the new condition.

 Deleting a condition

When a condition removal is initiated the Will be deleted label is added to the condition
name. Confirm action if you want to completely remove the condition from the system.

 Rejecting changes
By rejecting changes you can adjust a condition if you made a mistake.

166

 Working with parameters
On parameter creation it is in the Pending status, that is, awaiting approval. In contrast
to conditions thought, you can test parameters before approving changes. The testing
mechanism allows to apply a parameter on a single device or account to make sure it
works correctly.

167

 Creating a parameter

When a parameter is created, it has the New label. This parameter can be deleted
without approval as it is in the draft state.

168

 Modifying a parameter

You can compare the old parameter with a new one as well as discard changes by
deleting the draft. All users receive the source parameter.

169

 Deleting a parameter

When a parameter removal is initiated the Will be deleted label is added to the
parameter name.

170

 Testing a parameter
Testing allows to avoid applying incorrect configuration values. Testing is based on
applying custom atomic conditions to every possible version of the parameter.

Clicking the Configure test button displays the following window.

Tabs at the top match added conditions and the default value of the changed parameter.
On the screenshot above the tested value is the one that is received based on condition
My new condition.

Clicking the Run test button changes the parameter status to Testing—in this status
one you can confirm or reject changes.

Warning

The conditions being added fully replace atomic conditions of the My new condition
parameter. This is done for testing complex scenarios that is difficult to reproduce on the
user's device. For example, it can be a condition that utilizes the app version. You can
replace the source conditions with custom ones and check how the interface looks after
the My new condition condition is executed. In other words, the service allows to
receive any parameter value on the device based on custom conditions.

The first condition is limited by the available choice of types and operations. Only the
DeviceID and Account types are available together with the Exactly matches
operation. This restriction is to prevent from using a too wide range of users for testing.
There are no such restrictions starting from the second condition.

171

Note, that same Account or DeviceID is applied only to one condition or Default value.
Otherwise, the system will not know exactly with what value to respond, thus, the value
can be arbitrary and constantly changing.

During the deletion of the parameter there are not tabs and the selected atomic
conditions are applied globally. Since the parameter is being deleted, it is important to
test the consequences of this action. In this case, particular parameter conditions are
not important as they will be deleted with the parameter (see the example below).

 Tracer
The Tracer service gathers and analyzes errors to send auto reports to the developer.
This provides for fast and efficient error fixing. The service runs in iOS and Android
mobile apps.

With Tracer you can:

 do profiling in production environment to determine what causes lags and
freezes;

 find what causes memory leaks on the user's device in fully or partially automatic
mode;

 detect forgotten and leaked files to reduce the risk of the app removal or user
logout during the data cleaning.

 Android
 Quickstart
 Registration and configuration
To start the procedure, perform the following actions.

172

1. Log in to the Tracer account.
2. Create or join organization.
3. Add an Android project (you must have administrator or owner permissions).

 Connecting tracer dependencies to the project
In your <project>/settings.gradle.

pluginManagement {
repositories {

maven { url 'https://artifactory-external.vkpartner.ru/artifactory/maven/' }
}

} dependencyResolutionManagement {
repositories {

maven { url 'https://artifactory-external.vkpartner.ru/artifactory/maven/' }
}

}

In your <project>/<app-module>/build.gradle.

plugins {
id 'ru.ok.tracer' version '0.2.7'

}

tracer {
defaultConfig {

See in the "Settings" section
pluginToken = "PLUGIN_TOKEN"
appToken = "APP_TOKEN"
// Enables mapping loading for the build. By default: disabled.
uploadMapping = true

}
// You can also set configuration for every flavor, buildType, and buildVariant.
// Configurations inherit defaultConfig.
debug {
// Parameters...

}
demoDebug {
// Parameters...

}
}

dependencies {
// Plug-ins are independent of each other. You can connect only ones,
// that are required at the moment.
// Crashes and ANR gathering and analysis
implementation "ru.ok.tracer:tracer-crash-report:0.2.7"
// Native crashes gathering and analysis
implementation "ru.ok.tracer:tracer-crash-report-native:0.2.7"
// OOM heap dumps gathering and analysis
implementation "ru.ok.tracer:tracer-heap-dumps:0.2.7"
// Device disk usage analysis
implementation "ru.ok.tracer:tracer-disk-usage:0.2.7"
// Sampling profiler
implementation "ru.ok.tracer:tracer-profiler-sampling:0.2.7"
// Systrace

173

implementation "ru.ok.tracer:tracer-profiler-systrace:0.2.7"
}

 Enabling and configuring tracer plug-ins in your project
Enable the HasTracerConfiguration interface in your Application.kt (see below).

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
CoreTracerConfiguration.build {
// tracer core options

},
CrashReportConfiguration.build {
// crash collector options

},
CrashFreeConfiguration.build {
// crash free counting options

},
HeapDumpConfiguration.build {
// ООМ heap dumps collector options

},
DiskUsageConfiguration.build {
// disk usage analyzer options

},
SystraceProfilerConfiguration.build {
// production systrace profiler options

},
SamplingProfilerConfiguration.build {
// sampling profiler options

},
)

}

The HasTracerConfiguration.tracerConfiguration property will be called once on
Application.onCreate process start but only after Application.attachBaseContext. In
getter you can call the app context but it is early to call anything that will be initialized in
onCreate.

Below is a detailed description of the options:

 CoreTracerConfiguration — see below on this page.
 CrashReportConfiguration and CrashFreeConfiguration — on page Crash and

ANR.
 HeapDumpConfiguration — on page Heap Dumps.
 DiskUsageConfiguration — on page Disk Usage.
 SystraceProfilerConfiguration — on page Systrace Profiler.
 SamplingProfilerConfiguration — on page Sampling Profiler.

174

 CoreTracerConfiguration description
In a rare case you might want to configure the tracer core in your project, retrieve
CoreTracerConfiguration from HasTracerConfiguration.

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
CoreTracerConfiguration.build {
// your options

},
)

}

Below are the CoreTracerConfiguration.Builder options.

 setEnabled — not used and will be removed in version 0.3.x—tracer core is
always enabled, however, inactive if there are no enabled plug-ins.

 setHost, provideHost — tracer address change.
 setStatHost, provideStatHost — tracer address change for the crash free feature.
 setCustomAppKey, provideCustomAppKey — replaces sampleUploadToken from

the gradle plug-in configuration.

 Migrating to a new version
 Migrating from 0.2.7 to 0.2.3
The Condition class and the SystraceProfiler.start(context, profileDuration,
activeCondition) and SamplingProfiler.run(context, duration, condition) methods are
deprecated and will soon be removed. For manual profiling use SystraceProfiler and
SamplingProfiler API instead.

Where interestingEvents were set with TracerEvents.addEvent(), now call
SystraceProfiler.commit() or SamplingProfiler.commit()—depending on the profiling type
you used. Where you could catch interestingEvents, now call SystraceProfiler.start() or
SamplingProfiler.start() respectively.

 Migrating from 0.2.3 to 0.2.2
The TracerCrashReport.log(Throwable) method for sending non-fatals is now
deprecated and will soon be removed. Use the TracerCrashReport.report(Throwable)
method instead. This does not affect the TracerCrashReport.log(String) method for
adding crash and non-fatal event logs—it will continue to work as usual. See “Crash и
ANR” for up-to-date usage examples.

Starting from 0.2.3 the tracer-plugin connection method is changed. The dependency is
changed from ru.ok.tracer:plugin:0.1.1 to ru.ok.tracer:tracer-plugin:0.2.3 (note, not only
the version number is affected). Plugin id changes from ru.ok.tracer.mapping_plugin to
ru.ok.tracer. Further on, the plug-in and runtime versions will use the same numbering
and be published at the same time. See “Quickstart” for the up-to-date information.

175

 Migrating from 0.2.2 to 0.1.15
Tracer.configure and Tracer.configureAsync methods. Instead of calling these methods,
implement the HasTracerConfiguration interface in your Application class and retrieve
everything that was previously passed in Tracer.configure. See “Quickstart” for the
up-to-date information.

Now the tracer configuration is done at the current tracer start-up instead of the next
tracer start-up.

 Tracer Modules

 Crash and ANR

 Connecting dependencies to your project
In your <project>/<app-module>/build.gradle.

dependencies {
implementation "ru.ok.tracer:tracer-crash-report:0.2.7"

}

Also, Tracer supports gathering and analysis of native crashes. If you want to gather
crashes that occurred on the native code, connect the relevant dependency (see
below).

dependencies {
implementation "ru.ok.tracer:tracer-crash-report-native:0.2.7"

}

Warning

Currently, this feature is under active development. Crash logs gathering functions,
however, native crashes are displayed without stack trace and other details. Now you
can gather and count them while displaying and categorization are being tweaked.

For a detailed description of the dependencies see “Quickstart”.

 CrashReportConfiguration and CrashFreeConfiguration description
In your Application.kt.

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
CrashReportConfiguration.build {
// your options

},
CrashFreeConfiguration.build {
// your options

176

},
)

}

Below are the CrashReportConfiguration.Builder options:

 setEnabled — enables/disables crash reporting. By default: enabled.
 setSendAnr — disables ANR sending. By default: enabled.
 setNativeEnabled — enables/disables native crash reporting. The default value

depends on whether the tracer-crash-report-native dependency is connected. If
the dependency is connected, then, reporting is by default enabled. If not,
disabled.⚠ You cannot enable native crash reporting without connecting the
relevant dependency but you can disable reporting if the dependency is
connected.

Below are the CrashReportConfiguration.Builder options that are deprecated or
dangerous.

 setHost — deprecated and will be removed in version 0.3.x. If you really need to
change the host, use CoreTracerConfiguration.setHost;

 setSendLogs — deprecated and does nothing, will be removed in version 0.3.x;
 setCountCrashFreeUsers — deprecated and does nothing, will be removed in

version 0.3.x; use CrashFreeConfiguration.Builder.setEnabled instead;
 setSendThreadsDump, setSendAsap, setMaxNonFatalExceptions — deprecated

and do nothing, will be deleted in version 0.3.x.

Below are the CrashFreeConfiguration.Builder options.

 setEnabled — enables/disables crash free users count. By default: disabled!

Below are the CrashFreeConfiguration.Builder options that are deprecated or
dangerous.

 setExperimentalMaxSessionsToUpload — how many sessions to gather before
sending a batch. By default: 10. For testing purposes only!

 setExperimentalMaxSessionTimeSpanToUpload — for how long to gather
sessions before sending a batch. By default: 4 hours (in milliseconds). For testing
purposes only!

 setExperimentalUploadSessionsFromYesterday — send a batch if yesterday's (or
earlier) sessions are detected. By default: enabled.

 TracerCrashReport description
To send non-fatals the TracerCrashReport.report(throwable) method is used.

// Log a non-fatal error.
TracerCrashReport.report(NonFatalException("I'll be ok soon"))

177

Crashes are grouped by common parts of a stack trace. By default, non-fatals, however,
tweak this grouping approach.

You can gather all non-fatals in one group regardless of a stack trace using the report
method with the issueKey parameter.

// Log a non-fatal error with the ISSUE-001 key
TracerCrashReport.report(NonFatalException("What a terrible failure"), issueKey = "ISSUE-001")

Warning

Currently, Tracer has a limit of 1 million events a day. That is why the excessive use of
this method is not recommended.

You can also add additional info to an event.

 Heap Dumps

 Connecting dependencies to your project
In your <project>/<app-m,odule>/build.gradle.

dependencies {
implementation "ru.ok.tracer:tracer-heap-dumps:0.2.7"

}

For a detailed description of the dependencies see “Quickstart”.

 HeapDumpConfiguration description
In your Application.kt.

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
HeapDumpConfiguration.build {
// your options

},
)

}

Below are the HeapDumpConfiguration.Builder options.

 setEnabled — enables/disables OOM heap dumps gathering. By default:
enabled.

Below are the HeapDumpConfiguration.Builder options that are deprecated or
dangerous.

 setProbability — deprecated and does nothing, will be removed in version 0.3.x;

178

https://apptracer.ru/#/doc/android/sideload.md

 setInterestingSize — deprecated and does nothing, will be removed in version
0.3.x;

Note

Heap dumps are sent at night, when the user doesn't use their device.

 Disk Usage

 Connecting dependencies to your project
In your project <project>/<app-module>/build.gradle.

dependencies {
implementation "ru.ok.tracer:tracer-disk-usage:0.2.7"

}

For a detailed description of the dependencies see “Quickstart”.

 DiskUsageConfiguration description
In your Application.kt.

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
DiskUsageConfiguration.build {
// your options

},
)

}

Below are the DiskUsageConfiguration.Builder options.

 setEnabled — enable/disable plug-in. By default: enabled.
 setProbability — the probability (1/n) of daily background disk usage check for

this user. By default: 0; that means that the plug-in is enabled.
 setInterestingSize — occupied space limit, on exceeding which the SDK will

trigger an alarm and send report to Tracer. Measured in bytes. by default: 10 GB.
 setExcludePath — paths with known large files to be excluded from the check.

Accepts only paths set by GlobalDirs.

Below is the description of GlobalDirs.

 GlobalDirs.INTERNAL_DATA.excludePath("foo/bar") — app internal store.
 GlobalDirs.EXTERNAL_DATA.excludePath("foo/bar") — app files on SD card.
 GlobalDirs.SRC.excludePath("foo/bar") — files of the app itself.

179

 Systrace Profiler

 Connecting dependencies to your project
In your <project>/<app-module>/build.gradle.

dependencies {
implementation "ru.ok.tracer:tracer-profiler-systrace:0.2.7"

}

For a detailed description of the dependencies see “Quickstart”.

 SystraceProfilerConfiguration description
In your Application.kt.

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
SystraceProfilerConfiguration.build {
// your options

},
)

}

Below are the SystraceProfilerConfiguration.Builder options.

 setEnabled — enables/disables profiling. By default: enabled.

Below are the SystraceProfilerConfiguration.Builder options that are deprecated or
dangerous.

 setDurationMs — profiler performance time in milliseconds.
 addCondition — adds a Condition that triggers profiling.

 Description of Condition, TracerEvents, SystraceProfiler API, etc.
See “Sampling Profiler” for the up-to-date information.

 Sampling Profiler

 Connecting dependencies to your project
In your <project>/<app-module>/build.gradle.

dependencies {
implementation "ru.ok.tracer:tracer-profiler-sampling:0.2.7"

}

For a detailed description of the dependencies see “Quickstart”.

 SamplingProfilerConfiguration description
In your Application.kt.

180

class MyApplication : Application(), HasTracerConfiguration {
override val tracerConfiguration: List<TracerConfiguration>

get() = listOf(
SamplingProfilerConfiguration.build {
// your options

},
)

}

Below are the SamplingProfilerConfiguration.Builder options.

 setEnabled — enables/disables profiling. By default: enabled.

Below are the SamplingProfilerConfiguration.Builder options that are deprecated or
dangerous.

 setBufferSizeMb — see the android.os.Debug.startMethodTracingSampling
description;

 setSamplingIntervalUs — see the
android.os.Debug.startMethodTracingSampling description. By default: 5000.

 setDurationMs — profiler performance time in milliseconds.
 addCondition — adds a Condition that triggers profiling.

 Condition.Deprecated description.
Condition is used to manage profiling start and send profiling results. Below is a usage
example.

Condition.appStart(10_000, 7_000)

Start profiler with a 100% probability and send its performance result to the server if the
app startup time exceeds a threshold of 7000 ms.

Creating own event.

val condition = Condition.build { // your options }

Below are the Condition.Builder options.

 setTag("my_tag") — tag for the result to be loaded to Tracer.
 setTagLimit(n) — maximum amount of the reports per day that will be accepted

by the server.
 setProbability(n) — the probability (1/n) of starting the profiler on startEvent

occurrence.
 setStartEvent("my_event") — the profiler will start on this event occurrence with

the probability set above.
 setInterestingEvent("my_other_event") — optional. If set, the profiling result will

be sent to the backend only if the event occurs during profiler performance.

181

 setInterestingDuration(n) — if the time between the start event and the
interesting event exceeds this value, the profiling result will be sent to the
backend.

Info

If an interesting event has its own counter, the comparison will be done against this
counter. For example, app_freeze has a counter — the time the UI flow "hangs".
Therefore, if interestingEvent == "app_freeze" and interestingDuration == 700, the report
will be sent if there is a 700+ ms freeze during the profiler performance.

 Manual profiling
There is an option to set profiling start/stop in code manually.

 SamplingProfiler.start() — runs the profiler. Accepts the following parameters:
 context: Context — App context;
 tag: String — tag with which the result will be loaded to the tracer;
 duration: Long — profiler performance time in milliseconds.

 SamplingProfiler.abort() — stops the profiler and clears the result.
 SamplingProfiler.commit() — stops the profiler and sends the result to the

backend. If by the time of call the profiler is still active, the resulting tag will be
<tag>_<tagSuffix>.

 tagSuffix: String — suffix that will be added to the tag if the profiler stops
prematurely (optional).

See the example below.

The profiler will start with the probability of 1/100000.

if (Random.nextInt(100 _ 0 0 0) == 0) {
SamplingProfiler.start(

context = appContext,
tag = "stream_request" ,
duration = 10 _ 0 0 0 ,

)
}
// ... Code. For example, feed loading
SamplingProfiler.commit("loaded")

 Description of “system” events
“System” events are used in the Condition class and manual profiling:

 TracerEvents.EVENT_APP_START_BEGIN — "app_start_begin": app start.
 TracerEvents.EVENT_APP_START_END — "app_start_end":

Application.onCreate() method stop.

182

 TracerEvents.EVENT_FIRST_ACTIVITY_CREATED —
"app_first_activity_created": first activity created.

 TracerEvents.EVENT_ACTIVITY_CREATED — "activity_created" — an activity
is now in the created state.

 TracerEvents.EVENT_FREEZE — "app_freeze" — UI flow froze for N ms. If this
event is used as an interesting event, then, the interesting duration will be
compared against N. For example, if N == 500, then, the profiling result will be
sent if the UI flow freezes for more than 500 ms during the profiler performance.

 EVENT_ANR — "app_anr": UI flow froze and didn't recover by the time the
profiler stopped. N ms passed from freeze detection to the time the profiler
stopped. If this event is used as an interesting event, then, the interesting
duration will be compared against N. For example, if N == 5000, then, the
profiling result will be sent if the UI flow freezes for more than 5000 ms during the
profiler performance.

Adding user event (see below).

TracerEvents.addEvent(eventName, duration)

 eventName — event name. Used in the Condition class and in the startEvent and
interestingEvent methods.

 duration — duration time of this event. If set, then, interestingDuration will not be
calculated as difference between startEvent and interestingEvent, instead, it will
be compared against the duration of this event.

183

Developer Documentation

RuStore Billing SDK

Kotlin

Quick Start 89
General Information 95
Payment functions availability 99
How to get up-to-date information on the product list 100
How to get the user's list of products 104
How to get purchase info 109
How to handle purchases 114
Server purchase validation 116
Purchase confirmation 117
Purchase cancellation 119
Consumption and cancellation scenario 121
Event Logging 122
Error handling 124
SDK payment error codes 125
Migration to Payments SDK v1.0.0 and higher 128
RuStore SDK payments Release Notes 133

184

Quick Start

Example of implementation
Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline
Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your app user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

How to add a repository

Connect the repository:

repositories {
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

Dependency injection
Add the following code to your configuration file to inject the dependency:

dependencies {
implementation("ru.rustore.sdk:billingclient:5.0.0")

}

How to initialize a library
Initialize the library before calling its methods.
Create RuStoreBillingClient by using RuStoreBillingClientFactory.create():

val billingClient: RuStoreBillingClient =
RuStoreBillingClientFactory.create(

context = app,

185

https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://console.rustore.ru/sign-in

consoleApplicationId = "111111",
deeplinkScheme = "yourappscheme",
themeProvider = null,
debugLogs = false,
externalPaymentLoggerFactory = null,

)

● context — Android context. Any context is allowed, applicationContext is used in the
release version.

● consoleApplicationId — application code from the RuStore Developer Console
(example: https://console.rustore.ru/apps/111111).

● deeplinkScheme — deeplink scheme required to return to your app upon payment
via a third-party application (for example, SberPay or SBP). SDK generates its host
for this scheme.

● themeProvider — interface that provides BillingClientTheme. There are 2 possible
options of BillingClientTheme: light and dark. This interface is optional; the light team
is set by default.

● externalPaymentLoggerFactory — interface that provides access to an external
logger.

● debugLogs — flag that regulates logging (logs will be automatically disabled for
Release builds).

The ApplicationId specified in build.gradle must match the ApplicationId of the apk
file you published to the RuStore Console.

The keystore signature must be the same as the one used to sign the application
published to the RuStore Console system. Make sure that the buildType uses (eg:
debug) uses the same signature as the published application (eg: release).
The library supports event logging, which is enabled separately when the library is
initialized.

For details on library initialization, read the information above

Handling deeplinks in your app

To redirect a user back to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".YourBillingActivity">

<intent-filter>

186

https://console.rustore.ru/sign-in
https://console.rustore.ru/waiting

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one. This
scheme must match the deeplinkScheme parameter passed to init().

You also need to add the following code to the application to ensure a successful return:

class YourBillingActivity: AppCompatActivity() {

// Previously created with RuStoreBillingClientFactory.create()
private val billingClient: RuStoreBillingClient =

YourDependencyInjection.getBillingClient()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
if (savedInstanceState == null) {

billingClient.onNewIntent(intent)
}

}

override fun onNewIntent(intent: Intent?) {
super.onNewIntent(intent)
billingClient.onNewIntent(intent)

}
}

To restore your app after deep linking, you need to add the following to
AndroidManifest.xml:

android:launchMode="singleTask"

AndroidManifest.xml

187

<activity
android:name=".YourBillingActivity"
android:launchMode="singleTask"
android:exported="true"
android:screenOrientation="portrait"
android:windowSoftInputMode="adjustResize">

General Information

You can see the "Quick Start" section to quickly integrate payments into the app.

Example of implementation
Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline
Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your app user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

How to add a repository

Connect the repository:
repositories {

maven {
url =

uri("https://artifactory-external.vkpartner.ru/artifactory/maven")
}

}

Dependency injection

Add the following code to your configuration file to inject the dependency:
dependencies {

implementation("ru.rustore.sdk:billingclient:5.0.0")

188

https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://console.rustore.ru/sign-in

}

How to initialize a library

Initialize the library before calling its methods.
Create RuStoreBillingClient by using RuStoreBillingClientFactory.create():

val billingClient: RuStoreBillingClient =
RuStoreBillingClientFactory.create(

context = app,
consoleApplicationId = "111111",
deeplinkScheme = "yourappscheme",
themeProvider = null,
debugLogs = false,
externalPaymentLoggerFactory = null,

)

● context — Android context. Any context is allowed, applicationContext is used in the
release version.

● consoleApplicationId — application code from the RuStore Developer Console
(example: https://console.rustore.ru/apps/111111).

● deeplinkScheme — deeplink scheme required to return to your app upon payment
via a third-party application (for example, SberPay or SBP). SDK generates its host
for this scheme.

● themeProvider — interface that provides BillingClientTheme. There are 2 possible
options of BillingClientTheme: light and dark. This interface is optional; the light team
is set by default.

● externalPaymentLoggerFactory — interface that provides access to an external
logger.

● debugLogs — flag that regulates logging (logs will be automatically disabled for
Release builds).

The ApplicationId specified in build.gradle must match the applicationId of the apk file
published in RuStore Console.

The deeplink schema passed to deeplinkScheme must match the schema specified in
AndroidManifest.xml in the Deeplink Processing section.

The keystore signature must match the one used to sign the app published in RuStore
Console. Make sure that the buildType (eg debug) uses the same signature as the
published app.

189

Handling deeplinks in your app

To redirect a user to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".YourBillingActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

This scheme must match the deeplinkScheme parameter passed to init().

Next, add the following code to the Activity you need to return to after making the payment
(your store page):
class YourBillingActivity: AppCompatActivity() {

// Previously created with RuStoreBillingClientFactory.create()
private val billingClient: RuStoreBillingClient =

YourDependencyInjection.getBillingClient()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
if (savedInstanceState == null) {

billingClient.onNewIntent(intent)
}

}

override fun onNewIntent(intent: Intent?) {
super.onNewIntent(intent)
billingClient.onNewIntent(intent)

190

}
}

To restore your app after deep linking, you need to add the following to
AndroidManifest.xml:
android:launchMode="singleTask"

<activity
android:name=".YourBillingActivity"
android:launchMode="singleTask"
android:exported="true"
android:screenOrientation="portrait"
android:windowSoftInputMode="adjustResize">

191

Payment functions availability

To check whether your app supports payment functions, call the checkPurchasesAvailability
method. This method checks the following conditions:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, the method returns FeatureAvailabilityResult.Available. Otherwise,
it returns FeatureAvailabilityResult.Unavailable(val cause: RuStoreException), where cause
indicates an unfulfilled condition. All possible RuStoreException errors are described in
Error Handling. Other errors (e.g. "No internet connection") are processed in onFailure.

RuStoreBillingClient.checkPurchasesAvailability(context)
.addOnSuccessListener { result ->

when (result) {
FeatureAvailabilityResult.Available -> {

// Process purchases available
}

is FeatureAvailabilityResult.Unavailable -> {
// Process purchases unavailable

}
}

}.addOnFailureListener { throwable ->
// Process unknown error

}
where context refers to Android context.

How to get up-to-date information on the product list

Use the getProducts method to get a list of products:

val productsUseCase: ProductsUseCase = billingClient.products
productsUseCase.getProducts(productIds = listOf("id1", "id2"))

.addOnSuccessListener { products: List<Product> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

192

https://console.rustore.ru/sign-in

● productIds: list<string> — list of product identifiers. Maximum length is 2083 symbols
in a list.

The method returns:

data class Product(
val productId: String,
val productType: ProductType?,
val productStatus: ProductStatus,
val priceLabel: String?,
val price: Int?,
val currency: String?,
val language: String?,
val title: String?,
val description: String?,
val imageUrl: Uri?,
val promoImageUrl: Uri?,
val subscription: ProductSubscription?,

)

● productId — product identifier;
● productType — product type;
● productStatus — product status;
● priceLable — formatted product price, including the currency symbol in [language];
● price — price in minor units (in kopecks);
● currency — ISO 4217 currency code;
● language — language specified with the BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● imageUrl — link to the image;
● promoImageUrl — link to the promo image;
● subscription — subscription description, returned only for products with the

subscription type.

Product structure

data class ProductsResponse(

override val meta: RequestMeta?,

override val code: Int,

193

override val errorMessage: String?,

override val errorDescription: String?,

override val errors: List<DigitalShopGeneralError>?,

val products: List<Product>?,

) : ResponseWithCode

● meta — additional request info;
● code — response code;
● errorMessage — error message;
● errorDescription — error description;
● errors — list of errors;
● products — list of products.

Subscription Structure:

data class ProductSubscription(
val subscriptionPeriod: SubscriptionPeriod?,
val freeTrialPeriod: SubscriptionPeriod?,
val gracePeriod: SubscriptionPeriod?,
val introductoryPrice: String?,
val introductoryPriceAmount: String?,
val introductoryPricePeriod: SubscriptionPeriod?

)

● subscriptionPeriod — subscription period;
● freeTrialPeriod — trial subscription period;
● gracePeriod — subscription grace period;
● introductoryPrice — formatted introductory subscription price, including the currency

symbol, in product:language;
● introductoryPriceAmount — introductory price in minor units of currency (in

kopecks);

194

● introductoryPricePeriod — calculated period of the introductory price.

195

Structure of the subscription period:

data class SubscriptionPeriod(
val years: Int,
val months: Int,
val days: Int,

)

● years — number of years;
● months — number of months;
● days — number of days.

196

How to get the user's list of products

Use the getPurchases method to get the user's list of purchases

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchases()

.addOnSuccessListener { purchases: List<Purchase> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

Purchase Structure:

data class Purchase(
val purchaseId: String?,
val productId: String,
val productType: ProductType?,
val invoiceId: String?,
val description: String?,
val language: String?,
val purchaseTime: Date?,
val orderId: String?,
val amountLabel: String?,
val amount: Int?,
val currency: String?,
val quantity: Int?,
val purchaseState: PurchaseState?,
val developerPayload: String?,
val subscriptionToken: String?

)

● purchaseId — purchase ID;
● productId — product identifier;
● productType — product type;
● invoiceId — invoice ID;
● description — purchase description;
● language — language specified with the BCP 47 encoding;
● purchaseTime — purchase time (in RFC 3339 format);
● orderId — unique payment identifier generated by the application (uuid);

197

● amountLable — formatted purchase price, including the currency symbol in
[language];

● amount — price in minor units of currency;
● currency — ISO 4217 currency code;
● quantity — number of products;
● purchaseState — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● developerPayload — line specified by the developer that contains additional
information about the order;

● subscriptionToken — token for validating a purchase on the server.

Product structure

data class PurchasesResponse(

override val meta: RequestMeta?,

override val code: Int,

override val errorMessage: String?,

override val errorDescription: String?,

override val errors: List<DigitalShopGeneralError>?,

val purchases: List<Purchase>?,

) : ResponseWithCode

● meta — additional request info;
● code — response code;
● errorMessage — error message;
● errorDescription — error description;
● errors — list of errors;
● purchases — list of products.

198

The purchaseState model:

A status-based subscription purchase model (SUBSCRIPTIONS):

A status-based non-consumables subscription (NON-CONSUMABLES):

A status-based consumables subscription (CONSUMABLES):

199

How to get purchase info

Use the getPurchaseInfo method to get information about purchases:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchaseInfo("purchaseId")

.addOnSuccessListener { purchase: Purchase ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

Purchase Structure:

data class Purchase(

200

val purchaseId: String?,
val productId: String,
val productType: ProductType?,
val invoiceId: String?,
val description: String?,
val language: String?,
val purchaseTime: Date?,
val orderId: String?,
val amountLabel: String?,
val amount: Int?,
val currency: String?,
val quantity: Int?,
val purchaseState: PurchaseState?,
val developerPayload: String?,
val subscriptionToken: String?

)

● purchaseId — purchase ID;
● productId — product identifier;
● productType — product type;
● invoiceId — invoice ID;
● description — purchase description;
● language — language specified with the BCP 47 encoding;
● purchaseTime — purchase time (in RFC 3339 format);
● orderId — unique payment identifier generated by the application (uuid);
● amountLable — formatted purchase price, including the currency symbol in

[language];
● amount — price in minor units of currency;
● currency — ISO 4217 currency code;
● quantity — number of products;
● purchaseState — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● developerPayload — line specified by the developer that contains additional
information about the order;

● subscriptionToken — token for validating a purchase on the server.

201

The purchaseState model:

A status-based subscription purchase model (SUBSCRIPTIONS):

A status-based non-consumables subscription (NON-CONSUMABLES):

A status-based consumables subscription (CONSUMABLES):

202

203

How to handle purchases

Use the purchaseProduct method to call a product purchase:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchaseInfo("purchaseId")

.addOnSuccessListener { purchase: Purchase ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

● productId: String — product ID;
● orderId: String — order ID, generated by AnyApp (optional. If not specified, it is

generated automatically);
● quantity: Int — number of products (optional);
● developerPayload — additional information from the AnyApp developer (optional).

Payment result structure:
public sealed interface PaymentResult {

public data class Success(
val orderId: String?,
val purchaseId: String,
val productId: String,
val invoiceId: String,
val subscriptionToken: String? = null,

) : PaymentResult

public data class Cancelled(
val purchaseId: String,

) : PaymentResult

public data class Failure(
val purchaseId: String?,
val invoiceId: String?,
val orderId: String?,
val quantity: Int?,

204

val productId: String?,
val errorCode: Int?,

) : PaymentResult

public object InvalidPaymentState : PaymentResult()
}

● InvoiceResult — payments completed with a result;
● InvalidInvoice — payments completed without an invoice. Probably they were started

with incorrect invoice (empty string, for example);
● PurchaseResult — successful purchase of a digital item;
● InvalidPurchase — failed payment for a digital product;
● InvalidPaymentState — no PaymentState when payments are completed.

Server purchase validation

For server purchase validation you can use the subscriptionToken in the PurchaseResult
returned by purchaseProduct in case of a successful purchase.

SubscriptionToken consists of invoiceId of purchase and userId of RuStore, written with a
dot: "$invoiceId.$userId".

Getting subscriptionToken via purchase result

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.purchaseProduct(productId).addOnSuccessListener {
paymentResult ->

if (paymentResult is PaymentResult.Success) {
val subscriptionToken = paymentResult.subscriptionToken
yourApi.validate(subscriptionToken)

}
}

You can also get a subscriptionToken in the Purchase entity. The Purchase entity can be
retrieved using the getPurchases() method:

Getting subscriptionToken via purchase result

205

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchases().addOnSuccessListener { purchases ->

purchases.forEach { purchase ->
yourApi.validate(purchase.subscriptionToken)

}
}

Purchase confirmation

The RuStore application consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation if they are in the
PurchaseState.PAID state.

You can use the confirmPurchase method to confirm the purchase:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.confirmPurchase(purchaseId = "purchaseId",
developerPayload = null)

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

● purchaseId — purchase ID;
● developerPayload — line specified by the developer that contains additional

information about the order (optional).

206

207

Purchase cancellation

You can cancel purchases in your app.

You can use the deletePurchase method to cancel the purchase:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.deletePurchase(purchaseId = "purchaseId")

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

● purchaseId — purchase ID.
Note. Use this method if your app logic is related to purchase cancellation. The purchase is
canceled automatically after a 20-min timeout, or upon a second purchase from the same
customer.

Error Handling

Possible errors:

● RuStoreNotInstalledException() — RuStore is not installed on the user's device;
● RuStoreOutdatedException() — RuStore, installed on the user's device, does not

support payment processing functions;
● RuStoreUserUnauthorizedException() — user is not authorized on the RuStore;
● RuStoreApplicationBannedException() — your application is blocked on the RuStore;
● RuStoreUserBannedException() — user is blocked on the RuStore;
● RuStoreException(message: String) — basic RuStore error, from which all other

errors are inherited.

When calling the RuStoreBillingClient.purchases.purchaseProduct() method, errors are
handled automatically. You can use the resolveForBilling method to show an error dialog to
the user:

Error handling

public fun RuStoreException.resolveForBilling(context: Context)

208

Consumption and cancellation scenario

Uncompleted payments must be processed by the AnyApp developer.

The purchase cancellation method should be used if:

1. The method of getting the list of products returned the purchase status as follows:
○ PurchaseState.CREATED;
○ PurchaseState.INVOICE_CREATED;

Note. In some cases, after paying through a banking app (SBP, SberPay, TinkoffPay, etc.),
the purchase status may still return PurchaseState.INVOICE_CREATED when you
subsequently return to AnyApp. This is caused by the purchase processing time by the
bank. Therefore, the developer needs to correctly link the shopping list obtaining function to
the life cycle on the screen.

To solve this problem, you can cancel a purchase in the
PurchaseState.INVOICE_CREATED status only through user interaction with the
application. For example, create a separate button for this purpose.

2. The purchase method (purchaseProduct) returned PaymentResult.Cancelled.

3. The purchase method (purchaseProduct) returned PaymentResult.Failure.

Use product consumption method (confirmPurchase) if the method the purchase obtaining
method (getPurchases) returns a CONSUMABLE product and with the status
PurchaseState.PAID.

209

Event Logging
If you want to log payment library events when calling RuStoreBillingClient.init add
externalPaymentLoggerFactory and debugLogs parameters (these parameters are optional for
initialization):

val billingClient: RuStoreBillingClient =
RuStoreBillingClientFactory.create(

context = app,
consoleApplicationId = "111111",
deeplinkScheme = "yourappscheme",
externalPaymentLoggerFactory = { tag -> PaymentLogger(tag) },
debugLogs = true

)

class PaymentLogger(private val tag: String) : ExternalPaymentLogger
{

override fun d(e: Throwable?, message: () -> String) {
Log.d(tag, message.invoke(), e)

}

override fun e(e: Throwable?, message: () -> String) {
Log.e(tag, message.invoke(), e)

}

override fun i(e: Throwable?, message: () -> String) {
Log.i(tag, message.invoke(), e)

}

override fun v(e: Throwable?, message: () -> String) {
Log.v(tag, message.invoke(), e)

}

override fun w(e: Throwable?, message: () -> String) {
Log.w(tag, message.invoke(), e)

}
}

Logging processing parameters:

● externalPaymentLoggerFactory — interface that allows you to create a logger that
sends the library logs to the host application;

210

● debugLogs — enable logs (logs will be automatically disabled for Release builds).

Where PaymentLogger — example of payment event logging implementation.

211

Theme Changing
The SDK supports dynamic theme changing via the BillingClientThemeProvider provider
interface:

val billingClient: RuStoreBillingClient =
RuStoreBillingClientFactory.create(

context = app,
consoleApplicationId = "111111",
deeplinkScheme = "yourappscheme",
themeProvider? = BillingClientThemeProviderImpl(),

)

class BillingClientThemeProviderImpl: BillingClientThemeProvider {

override fun provide(): BillingClientTheme {
val darkTheme =
if(darkTheme){

BillingClientTheme.Dark
} else {

BillingClientTheme.Light
}

}
}

Error handling

Possible errors:

● RuStoreNotInstalledException() — RuStore is not installed on the user's device;
● RuStoreOutdatedException() — RuStore, installed on the user's device, does not

support payment processing functions;
● RuStoreUserUnauthorizedException() — user is not authorized on the RuStore;
● RuStoreApplicationBannedException() — your application is blocked on the

RuStore;
● RuStoreUserBannedException() — user is blocked on the RuStore;
● RuStoreException(message: String) — basic RuStore error, from which all other

errors are inherited.

212

When calling the RuStoreBillingClient.purchases.purchaseProduct() method, errors are
handled automatically.

You can use the resolveForBilling method to show an error dialog to the user:

public fun RuStoreException.resolveForBilling(context: Context)

213

SDK payment error codes

Description of possible errors in the "code" field of the "ResponseWithCode" interface:

http
code

code Description

200 0 Successful request

400 40001 Incorrect request parameters: mandatory parameters are not filled
in/incorrect parameters format

400 40003 No application found

400 40004 Inactive application status

400 40005 Product not found

400 40006 Inactive product status

400 40007 Invalid product type. Supported types: "consumables",
“non-consumables", "subscription"

400 40008 A purchase with this "order_id" already exists

400 40009 The current client has a purchase of this product with the status
"invoice_created". Your are required to offer the client to pay
for/cancel the purchase

400 40010 For "consumables" product type. The current customer
already has purchased this product with the status "paid".
First you need to confirm the purchase
on the device, and then you can send the following purchase
request for this product

400 40011 For "non-consumables" product type. The current client
already has purchased this product with the status
"pre_confirmed"/"confirmed". Such product has already been
purchased. This product cannot be sold more than once

400 40012 For "subscription" product type. The current client has already
purchased this product with the status "pre_confirmed"/"confirmed".
Such product has already been purchased. The product cannot be
sold more than once

214

400 40013 For "subscription" product type. When requesting the subscription
service for a list of products "GET/products" ("serviceId", "user_id")
data were not received

400 40014 The required attribute(s) was not received in the request

400 40015 Failed to change status when updating purchase (no transition
allowed)

400 40016 When purchasing a subscription for a non-consumable product, the
number > 1 is specified

400 40017 Product removed, no new purchases available

400 40018 You cannot consume a"product type" type product

401 40101 Invalid token

401 40102 Token lifetime has expired

403 40301 Access to the requested resource is denied (unauthorized)

403 40302 The current call is not authorized (method prohibited) for the token

403 40303 The application ID in the request does not match the one specified
in the token

403 40305 Incorrect token type

404 40401 Not found

408 40801 The notification timeout period specified in the request has expired

500 50*** Internal payment service error

215

Migration to Payments SDK v2.2.0 and higher

General

In version 2.2.0, the purchase model in PaymentResult was significantly modified.

Follow the steps below to switch to the new SDK version smoothly.

Dependency update

To update the dependency, call the billingclient version in the dependencies block of your
build.gradle:

build.gradle

dependencies {
implementation("ru.rustore.sdk:billingclient:2.2.0")

}

216

Model update

Getting List of Products

The list of products model was significantly modified. From now on getProducts() returns the
list of products:

val productsUseCase: ProductsUseCase = billingClient.products
productsUseCase.getProducts(productIds = listOf("id1", "id2"))

.addOnSuccessListener { products: List<Product> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

At that, the product and the error model remained unchanged.

217

Getting List of Purchases

The list of purchases model was significantly modified. From now on, getPurchases() returns
the list of purchases:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchases()

.addOnSuccessListener { purchases: List<Purchase> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

At that, the product and the error model remained unchanged.

218

Getting Product Info

The purchase info method was significantly modified. From now on, getPurchaseInfo() returns
the purchase method:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.getPurchaseInfo("purchaseId")

.addOnSuccessListener { purchase: Purchase ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

The error model remained unchanged.

Purchases

In this version, the purchase model was also modified. The new model is represented as
follows:

219

public sealed interface PaymentResult {

public data class Success(
val orderId: String?,
val purchaseId: String,
val productId: String,
val invoiceId: String,
val subscriptionToken: String? = null,

) : PaymentResult

public data class Cancelled(
val purchaseId: String,

) : PaymentResult

public data class Failure(
val purchaseId: String?,
val invoiceId: String?,
val orderId: String?,
val quantity: Int?,
val productId: String?,
val errorCode: Int?,

) : PaymentResult

public object InvalidPaymentState : PaymentResult()
}

where:

● Success — digital product purchased successfully.
● Failure — product purchase error.
● Cancelled — product purchase canceled.
● InvalidPaymentState — SDK error. Returned in case of deeplink processing errors.

Please note that the product purchase and cancellation scenario were successfully modified.

Product purchase scenario

The product purchase scenario was significantly changed. The purchase method can now
return an error:

220

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.confirmPurchase(purchaseId = "purchaseId", developerPayload =
null)

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

Product cancellation scenario

The product cancellation scenario was significantly changed. The cancellation method can now
return an error:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.deletePurchase(purchaseId = "purchaseId")

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

Product Purchase and Cancellation Scenario

Modifications in the product led to changes in the product purchase and cancellation scenario.

Use deletePurchase method if:

1. The getPurchases method returned an error with the following status:
1. PurchaseState.CREATED.
2. PurchaseState.INVOICE_CREATED.

2. The purchaseProduct method returned PaymentResult.Cancelled.
3. The purchaseProduct method returned PaymentResult.Failure.

Use confirmPurchase if getPurchases returned a CONSUMABLE type error with
PurchaseState.PAID status.

221

1.x.x to 3.x.x Payments Migration

General

In version 3.0.0, the purchase model in PaymentResult was significantly modified.

Follow the steps below to switch to the new SDK version smoothly.

Dependency update

To update the dependency, call the billingclient version in the dependencies block of your
build.gradle:

build.gradle

dependencies {
implementation("ru.rustore.sdk:billingclient:3.2.0")

}

222

Model update

Getting List of Products

The list of products model was significantly modified. From now on getProducts() returns the
list of products:

val productsUseCase: ProductsUseCase = billingClient.products
productsUseCase.getProducts(productIds = listOf("id1", "id2"))

.addOnSuccessListener { products: List<Product> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

At that, the product and the error model remained unchanged.

223

Getting List of Purchases

The list of purchases model was significantly modified. From now on, getPurchases() returns
the list of purchases:

val purchasesUseCase: PurchasesUseCase =
billingClient.purchases
purchasesUseCase.getPurchases()

.addOnSuccessListener { purchases: List<Purchase> ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

At that, the product and the error model remained unchanged.

224

Getting Product Info

The purchase info method was significantly modified. From now on, getPurchaseInfo() returns
the purchase method:

val purchasesUseCase: PurchasesUseCase =
billingClient.purchases
purchasesUseCase.getPurchaseInfo("purchaseId")

.addOnSuccessListener { purchase: Purchase ->
// Process success

}
.addOnFailureListener { throwable: Throwable ->

// Process error
}

The error model remained unchanged.

Purchases

In this version, the purchase model was also modified. The new model is represented as
follows:

225

public sealed interface PaymentResult {

public data class Success(
val orderId: String?,
val purchaseId: String,
val productId: String,
val invoiceId: String,
val subscriptionToken: String? = null,

) : PaymentResult

public data class Cancelled(
val purchaseId: String,

) : PaymentResult

public data class Failure(
val purchaseId: String?,
val invoiceId: String?,
val orderId: String?,
val quantity: Int?,
val productId: String?,
val errorCode: Int?,

) : PaymentResult

public object InvalidPaymentState : PaymentResult()
}

where:

● Success — digital product purchased successfully.
● Failure — product purchase error.
● Cancelled — product purchase canceled.
● InvalidPaymentState — SDK error. Returned in case of deeplink processing errors.

Please note that the product purchase and cancellation scenario were successfully modified.

226

Product consumption scenario

The product purchase scenario was significantly changed. The purchase method can now
return an error:

val purchasesUseCase: PurchasesUseCase =
billingClient.purchases
purchasesUseCase.confirmPurchase(purchaseId = "purchaseId",
developerPayload = null)

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

Product cancellation scenario

The product cancellation scenario was significantly changed. The cancellation method can now
return an error:

val purchasesUseCase: PurchasesUseCase =
billingClient.purchases
purchasesUseCase.deletePurchase(purchaseId = "purchaseId")

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

Product Purchase and Cancellation Scenario

Modifications in the product led to changes in the product purchase and cancellation scenario.

Use deletePurchase method if:

227

1. The getPurchases method returned an error with PurchaseState.CREATED or
PurchaseState.INVOICE_CREATED.

2. The purchaseProduct method returned PaymentResult.Cancelled.
3. The purchaseProduct method returned PaymentResult.Failure.

Use confirmPurchase if getPurchases returned a CONSUMABLE type error with
PurchaseState.PAID status.

Payment Errors FAQ
Q: How to fix the “Application is not verified yet” error?

А: This error occurs in the following cases:

● app review failed on RuStore Console;
● a tested apk does not match the one uploaded on RuStore Console.

The second point needs to be double-checked as follows:

● applicationId specified in build.gradle must match applicationId of the apk file that you
published on RuStore Console.

● keystore signature must match the signature that was used to sign the application
published on RuStore Console. Make sure that the buildType you use (eg debug) uses
the same signature as the published application (eg release).

For payments to work properly, you need to publish the application in full, at that, it is not
enough to pass the app review. Soon the logic will be redesigned so that review will be enough
to test payments.

Q: How to fix the error “Previously created product purchase“...” in the amount of ...
at the cost of ... rubles is paid in another session.”
A: The error occurs when attempting to purchase a product that has been terminated and
not finalized using the deletePurchase and confirmPurchase methods.
This often occurs when a process was interrupted and delete or consume methods were
not called in purchaseProduct due to the incorrectly terminated process.
For such cases, it is necessary to cancel or consume “suspended” purchases when starting
the application or opening the store.
Below is an example of processing a shopping list. Run this code when the application
starts or when the store screen opens:

228

https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in

val purchasesUseCase = billingClient.purchases

val purchases = purchasesUseCase.getPurchases().await().purchases.orEmpty()

purchases.forEach { purchase ->

val purchaseId = purchase.purchaseId

if (purchaseId != null) {

when (purchase.purchaseState) {

PurchaseState.CREATED, PurchaseState.INVOICE_CREATED -> {

purchasesUseCase.deletePurchase(purchaseId).await()

}

PurchaseState.PAID -> {

purchasesUseCase.confirmPurchase(purchaseId).await()

}

else -> Unit

}

}

}

You must also cancel or consume a purchase in purchaseProduct().

Purchase processing in purchaseProduct(), which would terminate the purchase, confirming or
canceling it, can be implemented as follows

229

private fun purchaseProduct(product: Product) {

val purchasesUseCase = billingClient.purchases

purchasesUseCase.purchaseProduct(product.productId)

.addOnSuccessListener { paymentResult ->

handlePaymentResult(paymentResult, product)

}

.addOnFailureListener {

// Handle error

}

}

private fun handlePaymentResult(paymentResult: PaymentResult, product: Product) {

when (paymentResult) {

is PaymentResult.InvalidPurchase -> {

paymentResult.purchaseId?.let { deletePurchase(it) }

}

is PaymentResult.PurchaseResult -> {

when (paymentResult.finishCode) {

PaymentFinishCode.SUCCESSFUL_PAYMENT -> {

if (product.productType == ProductType.CONSUMABLE) {

230

confirmPurchase(paymentResult.purchaseId)

}

}

PaymentFinishCode.CLOSED_BY_USER,

PaymentFinishCode.UNHANDLED_FORM_ERROR,

PaymentFinishCode.PAYMENT_TIMEOUT,

PaymentFinishCode.DECLINED_BY_SERVER,

PaymentFinishCode.RESULT_UNKNOWN,

-> {

deletePurchase(paymentResult.purchaseId)

}

}

}

else -> Unit

}

}

Read more in the “Consumption and purchase cancellation scenario” section.
You can also view the status model of purchases in the “Getting a shopping list” section.

Q: How to perform server purchase validation?

231

A: First you need to get a subscriptionToken, which is a unique identifier for the user's purchase.
Read more in the “Server purchase validation”section.

Next, you need to send the subscriptionToken to your backend, where you can request the
purchase information using the “Get payments via its subscription token”.

Q: How can I fix 404 when calling confirmPurchase or deletePurchase?

A: Make sure to pass the purchaseId as a parameter to the confirmPurchase and
deletePurchase methods

val purchasesUseCase = billingClient.purchases

val purchases = purchasesUseCase.getPurchases().await().purchases.orEmpty()

purchases.forEach { purchase ->

val purchaseId = purchase.purchaseId

if (purchaseId != null) {

when (purchase.purchaseState) {

PurchaseState.CREATED, PurchaseState.INVOICE_CREATED -> {

// purchasesUseCase.deletePurchase(purchaseId =
purchase.productId).await() WRONG

purchasesUseCase.deletePurchase(purchaseId = purchaseId).await() //
CORRECT

}

PurchaseState.PAID -> {

// purchasesUseCase.confirmPurchase(purchaseId =
purchase.productId).await() WRONG

purchasesUseCase.confirmPurchase(purchaseId = purchaseId).await() //
CORRECT

232

}

else -> Unit

}

}

}

Q: How to fix the "Method unavailable" error

A: consoleApplicationId must match the code on the RuStore Console (example:
https://console.rustore.ru/apps/111111).

Q: How to cancel a subscription?

A: There is no method for canceling a subscription, you can only cancel auto-renewal in the
RuStore app.

The subscription screen can be opened via deeplink:

startActivity(Intent(Intent.ACTION_VIEW, Uri.parse("rustore://profile/subscriptions")))

Below is a page with a list of deeplinks:
https://help.rustore.ru/rustore/for_developers/developer-documentation/RuStore_deeplinks

Q: Can I publish an app with RuStore SDK on Google Play, Huawei Store?

A: Since developers sign an application on Google Play with a Google signature, and on
RuStore they sign it with their own one, the signing keys will always mismatch. Hence, RuStore
SDK will not be available inside Google Play (or another application store). This means that for
the RuStore SDK to work correctly, the user will need to download the application from RuStore
and pay for a subscription there.

Q: What packageName does RuStore have?

A: ru.vk.store.

233

https://console.rustore.ru/apps/111111
https://help.rustore.ru/rustore/for_developers/developer-documentation/RuStore_deeplinks

Q: How can I determine which store an app was installed from?

A: To do this, follow the steps below:

val installerPackage =
packageManager.getInstallerPackageName(applicationInfo.packageName)

ru.vk.store is returned, but this function is unstable:

● This method will only work for applications originally installed from RuStore. If the
application was originally installed from Google Play or other stores, then the source will
be the standard package installer.

● If compatibility mode was used for installation (as on some Xiaomi models), then the
installation source will be the Xiaomi system installer.

● If you delete RuStore, the installation source will be completely deleted. The installation
source will not be returned even in case of subsequent installation.

We recommend creating a separate buildFlavor for RuStore.

Q: Why does the timeout drop in payment methods? (PayLibBackendFailure$TimeoutError)

A: Payment via RuStore SDK is not available outside Russia. An enabled VPN may also
interfere with the function.

Q: How to test payments? Can I use real cards?

A: You can only test payments using real cards. A sandbox is under development.

Q: Is there Java support?

A: Yes, there is. Kotlin is backward compatible with Java, but with some quirks.

For example, let’s take the object entity from Kotlin, which is an analogue of the static class in Java:

RuStoreReviewManagerFactory.create(context)

Below is the request to RuStoreReviewManagerFactory in Java:

RuStoreReviewManagerFactory.INSTANCE.create(getContext());

234

RuStore SDK payments Release Notes

SDK 3.1.0

● Sandbox added;
● Internal SDK update

SDK 3.0.0

● Updates related to new dark mode settings;
● Fixed errors.

SDK version 2.2.0

● Added dynamic (light and dark) theme change function;
● Stabilized library performance;
● Fixed error related to payment via deeplink.

SDK version 2.1.2

● Fixed errors related to uninstalled RuStore app

SDK version 2.1.1

● Security practices updated

SDK version 2.1.0

● Modified response templates:
○ getting a list of products
○ getting a list of purchases
○ product purchase
○ purchase consumption
○ purchase cancellation

● Enhanced payment dialog appearance.

235

SDK version 1.1.0
● New payment method added: payment via TinkoffPay.
● New option: save card details during payment.
● Fixed: appearance and payment dialog improved.
● Fixed: unnecessary dependencies and uses-permissions removed.
● The PurchaseResult model supplemented with a new invoice ID field — invoiceId.

SDK version 1.0.0
● Moved from singleton to instance creation: RuStoreBillingClient.init() replaced with

RuStoreBillingClientFactory.create().
● Singleton operation methods (init, products, purchases, getSingleton) marked as

deprecated and are planned to be removed in further versions.
● To find out more about the changes, see the migration guide: "Migration to Payments

SDK v1.0.0 and higher"
● The checkPurchasesAvailability() method became static — you can check for payments

availability without creating a RuStoreBillingClient instance.
SDK version 0.1.7

● Internal SDK update.

SDK version 0.1.6

● Added the subscriptionToken field to the Purchase entity for server purchase
validation.

SDK version 0.1.5

● Transition to Minciphra Certificates.
● Fixed payment button display via SBP when you quickly switch to an offer and back.
● The traceId: String field of the ResponseWithCode interface has been replaced by

the meta: RequestMeta field, which contains traceId inside.

SDK version 0.1.4

● Added links to the offer for SBP and cell phone payment.
● Added additional disclaimer if payment confirmation takes more than 15 seconds.
● Fixed errors when working with OTP-codes and sending SMS.
● Fixed generation of orderId field for invoice on the RuStore if orderId is passed to

purchaseProduct() as null.
● Added a blocking error message if the bank application does not support SBP

deeplink.
● Added PurchaseResult.subscriptionToken, which ensures server purchase

validation.

SDK version 0.1.3

● Added payment by phone number to purchaseProduct().

236

● In the initialization, the externalPaymentLogger parameter has been replaced by
externalPayemtnLoggerFactory, intended for the ExternalPaymentLogger
implementation (see Event Logging).

SDK version 0.1.2

● Added the Fast Payment System (SBP).
● Added the deeplinkSheme parameter to the init method.
● Removed deeplinkPrefix parameter from the init method.
● Fixed data loss bug in the card data entry form after minimizing the application.

SDK version 0.1.1

● Removed the "language" parameters for the following methods:
○ Getting a list of products — "getProducts".
○ Getting a list of purchases — "getPurchases".
○ Product confirmation — "confirmPurchase".
○ Product cancellation — "deletePurchase".

● Added the RuStoreBillingClient.isInitialized field, which returns the initialization
status of the library.

SDK version 0.1.0

● The parameters of init have changed.
● Added check of payments availability — "checkPurchasesAvailability" method.
● In all methods, the "language" parameter has become optional.
● Suspend methods have been replaced by task API in the following methods:

○ Getting a list of products — "getProducts".
○ Getting a list of purchases — "getPurchases".
○ Product purchase — "purchaseProduct".
○ Product confirmation — "confirmPurchase".
○ Product cancellation — "deletePurchase".

● The "context" parameter has been removed from the "purchaseProduct" method.
● Removed the "resultObserver" method, now the purchase result is returned as

"purchaseProduct".
● The "onFail" parameter is removed in the "resolveForBilling" method.

SDK version 0.0.9

● Added optional parameters "ExternalPaymentLogger" and "debugLogs" to the init
function.

237

Godot

General Information

Example of implementation
Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline
Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

Embed in your project

To connect SDK to your project, you need to download the following archive:
https://gitflic.ru/project/rustore/godot-rustore-billing/release.

Unpack the zip archive and add the files rustore-billing.aar and RustoreBilling.gdap to your
project folder /android/plugins

example/
android/

plugins/
rustore-billing-release.aar
RustoreBilling.gdap

Handling deeplinks in your app

238

https://gitflic.ru/project/rustore/godot-rustore-billing/file?file=example&branch=master
https://console.rustore.ru/sign-in

To redirect a user to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".sample.MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE"

/>
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

This scheme must match the deeplinkScheme parameter passed to init().

Exporting a project with an enabled plugin

To make a plugin available in your Godot project, it must be enabled in the export settings.

239

After all the settings are set, you can use the plugin in your project.

How to initialize the library

You must initialize the library to call its method. To do this, call the init() method:

if Engine.has_singleton("RustoreBilling"):
billing = Engine.get_singleton("RustoreBilling")

billing.init("123456", "yourappscheme://iamback")

billing.rustore_is_available.connect(_on_availability)
billing.rustore_purchase_product.connect(_on_purchase)
billing.rustore_delete_purchase.connect(_on_delete)
billing.rustore_confirm_purchase.connect(_on_confirm)
billing.rustore_get_purchases.connect(_on_get_purchases)
billing.rustore_get_purchase.connect(_on_get_purchase)
billing.rustore_get_products.connect(_on_get_products)

● 123456 — application code from RuStore Console (example:
https://console.rustore.ru/apps/123456).

● yourappscheme://iamback — deeplink scheme required to return to your app page
after payment through a third-party application (for example, SberPay or SBP). The
SDK generates its own host for this scheme.

Make sure that the deeplink scheme passed to deeplinkScheme matches the scheme
specified in AndroidManifest.xml in the "Deeplink Processing" section.

After the plugin is initialized, it will be connected to all available signals.

240

https://console.rustore.ru/apps/752063

Payment functions availability

To check whether your app supports payment functions, the following conditions should be
met:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, the isAvailable() method returns true.

func _availability():
if billing != null:
billing.isAvailable()

func _on_availability(data: Dictionary):
if data['status'] == 'success':
print('success')
print(data['result'])
elif data['status'] == 'failure':
print('failure')
print(data['message'])

The _on_availability(data: Dictionary) method is a rustore_is_available signal handler that
receives a message about RuStore availability.

The data['status'] key stores the request execution status. Possible values
● success —request successfully completed. In this case, the data['result'] key will return

true if RuStore is available and false if it is not available.
● failure — request error occurred. In the key data['message']

Getting the product list

Use the getProducts method to get a list of products:

func _get_products():
if billing != null:

billing.getProducts([
"example1",

241

https://console.rustore.ru/sign-in

"example2"
])

func _on_get_products(data: Dictionary):
if data['status'] == 'success' and data.has('items'):

var items = data['items']
for key in items:

print(items[key])
elif data['status'] == 'failure':

print('failure')
print(data['message'])

The _on_get_products(data: Dictionary) method is a rustore_get_products signal handler
that receives a message with a list of available products.

● ids — list of products IDs.

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.

Available fields:

● product_id — product ID;
● product_type — product type;
● product_status — product status;
● price_lable — formatted product price, including currency symbol in [language];
● price — price in minimum units (in kopecks);
● currency — currency code ISO 4217;
● language — language specified using BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● image_url — image link
● promo_image_url — promotional image link;

242

● subscription — subscription description, returned only for subscription type products.

Fields available in subscription

● subscription_period — subscription period;
● free_trial_period — subscription trial period;
● grace_period — subscription grace period;
● introductory_price — formatted introductory subscription price, including currency

sign, in product:language;
● introductory_price_amount — introductory price in minimum currency units (in

kopecks);
● introductory_price_period — calculation period of the introductory price.

Fields available for subscription_period, free_trial_period, grace_period and
introductory_price_period

● years — number of years;
● months — number of months;
● days — number of days.

243

How to get the user's list of products

Use the getPurchases method to get the user's list of purchases

func _get_purchases():
if billing != null:

billing.getPurchases()

func _on_get_purchases(data: Dictionary):
if data['status'] == 'success' and data.has('items'):

var items = data['items']
for key in items:

print(items[key])
elif data['status'] == 'failure':

print('failure')
print(data['message'])

The _on_get_purchases(data: Dictionary) method is a rustore_get_purchases signal
handler that receives a message with a list of available products.

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.

Available fields:

● purchase_id — purchase ID;
● product_id — product ID;
● product_type — product type;
● invoice_id — account ID;
● description — purchase description;
● language — language specified using BCP 47 encoding;
● purchase_time — purchase time (in RFC 3339);
● order_id — unique payment ID generated by the application (uuid);
● amount_lable — formatted purchase price, including currency symbol in [language];
● amount — price in minimum currency units;

244

● currency — ISO 4217 currency code;
● quantity — quantity of product;
● purchase_state — purchase state;
● developer_payload — string specified by the developer containing additional

information about the order;
● subscription_token — token for server purchase validation. For more information

about validating a purchase on the server, see the “Server-based purchase
validation” section.

Possible purchase status values:

● CREATED — created;
● INVOICE_CREATED — created, awaiting payment;
● CONFIRMED — confirmed;
● PAID — paid;
● CANCELLED — purchase canceled;
● CONSUMED — purchase confirmed;
● CLOSED — subscription canceled.

For more information about the purchasing status model, see the section “Getting a user’s
shopping list.”

245

Getting purchase info

Use the purchaseInfo() method to get the user's list of purchases

func _purchase_info(id: String):
if billing != null:

billing.purchaseInfo(id)

func _on_get_purchase(data: Dictionary):
if data['status'] == 'success':

print('success')
print(data['purchase'])

elif data['status'] == 'failure':
print('failure')
print(data['message'])

The _on_get_purchase(data: Dictionary) method is a rustore_get_purchase signal handler
that receives a message with a list of available products.

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.

Available fields:

● purchase_id — purchase ID;
● product_id — product ID;
● product_type — product type;
● invoice_id — account ID;
● description — purchase description;
● language — language specified using BCP 47 encoding;
● purchase_time — purchase time (in RFC 3339);
● order_id — unique payment ID generated by the application (uuid);
● amount_lable — formatted purchase price, including currency symbol in [language];

246

● amount — price in minimum currency units;
● currency — ISO 4217 currency code;
● quantity — quantity of product;
● purchase_state — purchase state;
● developer_payload — string specified by the developer containing additional

information about the order;
● subscription_token — token for server purchase validation. For more information

about validating a purchase on the server, see the “Server-based purchase
validation” section.

Possible purchase status values:

● CREATED — created;
● INVOICE_CREATED — created, awaiting payment;
● CONFIRMED — confirmed;
● PAID — paid;
● CANCELLED — purchase canceled;
● CONSUMED — purchase confirmed;
● CLOSED — subscription canceled.

For more information about the purchasing status model, see the section “Getting a user’s
shopping list.”

247

How to handle purchases

Use the purchaseProduct(id) method to call a product purchase:

func _purchase(id: String):
var params = {

"order_id": "1234",
"quantity": 1,
"payload": "example"

}

if billing != null:
billing.purchaseProduct(id, params)

func _on_purchase(data: Dictionary):
if data['status'] == 'cancelled':

print('cancelled')
if data['purchase'] != '':

_delete(data['purchase'])
elif data['status'] == 'success':

print('success')
print(data)

elif data['status'] == 'failure':
print('failure')
print(data['message'])

The _on_on_purchase(data: Dictionary) method is a rustore_purchase_product signal handler
that receives a message with a list of available products.

● ids — list of products IDs.
● order_id — order ID, created on the AnyApp side (optional. If not specified, it is

generated automatically);
● quantity — number of products (optional);
● payload — additional information from the AnyApp developer (optional).

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.
● canceled — user canceled the purchase.

248

Available fields:

● product_id — product ID;
● order_id — order ID, created on the AnyApp side (optional. If not specified, it is

generated automatically);
● invoice_id — account ID;
● product_id — product ID;
● quantity — number of products (optional);
● payload — additional information from the AnyApp developer (optional).
● error_code — error code in case of failed request.

249

Purchase confirmation

The RuStore application consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation if they are in the
PurchaseState.PAID state.

You can use the confirmPurchase(id) method to confirm the purchase:

func _confirm(id: String):
var params = {

"payload": "123"
}

if billing != null:
billing.confirmPurchase(id, params)

func _on_confirm(data: Dictionary):
print(data)
if data['status'] == 'success':

print('success')
elif data['status'] == 'failure':

print('failure')
print(data['message'])

The _on_confirm(data: Dictionary) method is a rustore_get_purchase signal handler that
receives a message with purchase information.

● id — purchase ID.
● payload — string with additional information about the order (optional).

250

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.

251

Purchase cancellation

You can cancel purchases in your app.

You can use the deletePurchase(id) method to cancel the purchase:

func _delete(id: String):
if billing != null:

billing.deletePurchase(id)

func _on_delete(data: Dictionary):
print(data)
if data['status'] == 'success':

print('success')
elif data['status'] == 'failure':

print('failure')
print(data['message'])

The _on_delete(data: Dictionary) method is a rustore_get_purchase signal handler that
receives a message with purchase information.

● id — purchase ID.

The data['status'] key stores the request execution status. Possible values:

● success — request successfully executed. In this case, the data['items'] key will
store a list of available products.

● failure — request error occurred. The data['message'] key stores the error message.

252

Java
Quick Start 137
General Information 143
Payment functions availability 147
How to get the user's list of products 148
How to get the user's list of purchases 153
How to get purchase info 159
How to handle purchases 165
Server purchase validation 168
Purchase confirmation 169
Purchase cancellation 172
Consumption and cancellation scenario 175
Event Logging 176
Error handling 178
Migration to 1.0.0 purchase version 179

253

Quick Start

Payment integration guideline

Check out the example application (Kotlin) to learn how to properly integrate payments.

Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. The user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions on work outside of Russia.

How to add a repository

Connect the repository:

repositories {
maven {

url
"https://artifactory-external.vkpartner.ru/artifactory/maven"

}
}

Dependency injection

Add the following code to your configuration file to inject the dependency:

dependencies {
implementation("ru.rustore.sdk:billingclient:5.0.0")

}

How to initialize a library

Initialize the library before calling its methods.
Create RuStoreBillingClient by using RuStoreBillingClientFactory.create():

final Context context = getContext();

254

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/java/quick_start
https://console.rustore.ru/sign-in
https://artifactory-external.vkpartner.ru/artifactory/maven

final String consoleApplicationId = "111111";
final String deeplinkScheme = "yourappscheme";

final BillingClientThemeProvider themeProvider = null;
final boolean debugLogs = false;
final ExternalPaymentLoggerFactory externalPaymentLoggerFactory =
null;

RuStoreBillingClient billingClient =
RuStoreBillingClientFactory.INSTANCE.create(

context,
consoleApplicationId,
deeplinkScheme,
themeProvider,
debugLogs,
externalPaymentLoggerFactory

);

● context — Android context. Any context is allowed, applicationContext is used in the
release version.

● consoleApplicationId — application code from the RuStore Developer Console
(example: https://console.rustore.ru/apps/111111).

● deeplinkScheme — deeplink scheme required to return to your app upon payment
via a third-party application (for example, SberPay or SBP). SDK generates its host
for this scheme.

● themeProvider — interface that provides BillingClientTheme. There are 2 possible
implementations of BillingClientTheme: light and dark. This interface is optional; the
default is a light theme.

● externalPaymentLoggerFactory — interface that provides access to an external
logger.

● debugLogs — flag that regulates logging (logs will be automatically disabled for
Release builds).

The ApplicationId specified in build.gradle must match the applicationId of the apk
file you published to the RuStore Console.

The keystore signature must be the same as the one used to sign the application
published to the RuStore Console system. Make sure that the buildType uses (eg:
debug) uses the same signature as the published application (eg: release).

255

https://console.rustore.ru/sign-in
https://console.rustore.ru/waiting

The library supports event logging, which is enabled separately when the library is
initialized.

For details on library initialization, read the above information.

Handling deeplinks in your app

To redirect a user back to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".YourBillingActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE"

/>
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one. This
scheme must match the deeplinkScheme parameter passed to init().

You also need to add the following code to the application to ensure a successful return:

public class YourBillingActivityextends AppCompatActivity {

// Previously created with RuStoreBillingClientFactory.create();
RuStoreBillingClient billingClient =

YourDependencyInjection.getBillingClient();

@Override
public void onCreate(@Nullable Bundle savedInstanceState) {

256

super.onCreate(savedInstanceState);
if (savedInstanceState == null) {

billingClient.onNewIntent(getIntent());
}

}

@Override
protected void onNewIntent(Intent intent) {

super.onNewIntent(intent);
billingClient.onNewIntent(intent);

}
}

How to get a list of purchases

RuStore Billing SDK requires proper processing of purchases to provide the best-case
scenario. For example, purchased items need to be consumed and unfinished purchases
need to be canceled to ensure that a user can start a new one all over again.

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.getPurchases().addOnSuccessListener(purchases -> {

for (Purchase purchase: purchases) {
if (purchase.getPurchaseId() != null) {

if (purchase.getPurchaseState() == PurchaseState.CREATED
|| purchase.getPurchaseState() == PurchaseState.INVOICE_CREATED) {

purchasesUseCase.deletePurchase(purchase.getPurchaseId());
} else if (purchase.getPurchaseState() ==

PurchaseState.PAID) {

purchasesUseCase.confirmPurchase(purchase.getPurchaseId());
}

}
}

});

How to handle purchases

Process the purchase result as follows:

private void purchaseProduct(Product product) {

257

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();

purchasesUseCase.purchaseProduct(product.getProductId())
.addOnSuccessListener(paymentResult ->

handlePaymentResult(paymentResult, product))
.addOnFailureListener(throwable -> { /* Handle error */

});
}

private void handlePaymentResult(PaymentResult paymentResult,
Product product) {

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();

if (paymentResult instanceof PaymentResult.Cancelled) {
String purchaseId = ((PaymentResult.Cancelled)

paymentResult).getPurchaseId();
purchasesUseCase.deletePurchase(purchaseId);

} else if (paymentResult instanceof PaymentResult.Success) {
PaymentResult.Success purchaseResult =

((PaymentResult.Success) paymentResult);

purchasesUseCase.confirmPurchase(purchaseResult.getPurchaseId());
} else if (paymentResult instanceof PaymentResult.Failure) {

String purchaseId = ((PaymentResult.Failure)
paymentResult).getPurchaseId();

if (purchaseId != null) {
purchasesUseCase.deletePurchase(purchaseId);

}
}

}

258

General Information

You can see the "Quick Start" section to quickly integrate payments into the app.

Example of implementation

Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline

Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your app user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

How to add a repository
Connect the repository:

repositories {
maven {

url
"https://artifactory-external.vkpartner.ru/artifactory/maven"

}
}

Dependency injection
Add the following code to your configuration file to inject the dependency:

dependencies {
implementation("ru.rustore.sdk:billingclient:5.0.0")

}

How to initialize a library

Initialize the library before calling its methods.
Create RuStoreBillingClient by using RuStoreBillingClientFactory.create():

final Context context = getContext();

259

https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://console.rustore.ru/sign-in
https://artifactory-external.vkpartner.ru/artifactory/maven

final String consoleApplicationId = "111111";
final String deeplinkScheme = "yourappscheme";

final BillingClientThemeProvider themeProvider = null;
final boolean debugLogs = false;
final ExternalPaymentLoggerFactory externalPaymentLoggerFactory =
null;

RuStoreBillingClient billingClient =
RuStoreBillingClientFactory.INSTANCE.create(

context,
consoleApplicationId,
deeplinkScheme,
themeProvider,
debugLogs,
externalPaymentLoggerFactory

);

● context — Android context. Any context is allowed, applicationContext is used in the
release version.

● consoleApplicationId — application code from the RuStore Developer Console
(example: https://console.rustore.ru/apps/111111).

● deeplinkScheme — deeplink scheme required to return to your app upon payment
via a third-party application (for example, SberPay or SBP). SDK generates its host
for this scheme.

● themeProvider — interface that provides BillingClientTheme. There are 2 possible
implementations of BillingClientTheme: light and dark. This interface is optional; the
default is a light theme.

● externalPaymentLoggerFactory — interface that provides access to an external
logger.

● debugLogs — flag that regulates logging (logs will be automatically disabled for
Release builds).

Make sure that the deeplink scheme passed to deeplinkScheme matches the one specified
in AndroidManifest.xml under "Handling deeplinks in your app".

The library supports event logging which is plugged in separately when the library is
initialized.
Handling deeplinks in your app

260

To redirect a user to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".YourBillingActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

This scheme must match the deeplinkScheme parameter passed to init().

Next, add the following code to the Activity you need to return to after making the payment
(your store page):

public class YourBillingActivityextends AppCompatActivity {

// Previously created with RuStoreBillingClientFactory.create();
RuStoreBillingClient billingClient =

YourDependencyInjection.getBillingClient();

@Override
public void onCreate(@Nullable Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
if (savedInstanceState == null) {

billingClient.onNewIntent(getIntent());
}

}

@Override

261

protected void onNewIntent(Intent intent) {
super.onNewIntent(intent);
billingClient.onNewIntent(intent);

}
}

To restore your app after deep linking, you need to add the following to
AndroidManifest.xml:
android:launchMode="singleTask"

<activity
android:name=".YourBillingActivity"
android:launchMode="singleTask"
android:exported="true"
android:screenOrientation="portrait"
android:windowSoftInputMode="adjustResize">

262

Payment functions availability

To check whether your app supports payment functions, call the checkPurchasesAvailability
method. This method checks the following conditions:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. The app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, the method returns FeatureAvailabilityResult.Available. Otherwise,
it returns FeatureAvailabilityResult.Unavailable(val cause: RuStoreException), where cause
indicates an unfulfilled condition. All possible RuStoreException errors are described in
Error Handling. Other errors (e.g. "No internet connection") are processed in onFailure.

RuStoreBillingClientExtKt.checkPurchasesAvailability(RuStoreBilling
Client.Companion, getContext())

.addOnSuccessListener(result -> {
if (result instanceof

FeatureAvailabilityResult.Available) {
// Hanlde purchases available

} else {
RuStoreException exception =

((FeatureAvailabilityResult.Unavailable) result).getCause();
// Hanlde purchases unavailable

}
})
.addOnFailureListener(error -> {

// Handle error
});

How to get the user's list of products

Use the getProducts method to get the user's list of products

263

https://console.rustore.ru/sign-in

ProductsUseCase productsUseCase = billingClient.getProducts();
productsUseCase.getProducts(Arrays.asList("id1",
"id2")).addOnCompleteListener(new
OnCompleteListener<List<Product>>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(List<Product> products) {

// Process success
}

});

● productIds: List<String> - list of product identifications.

The method returns:

interface Product {
public String getProductId();

@Nullable
public ProductType getProductType();

public ProductStatus getProductStatus();

@Nullable
public String getPriceLabel();

@Nullable
public Integer getPrice();

@Nullable
public String getCurrency();

@Nullable

264

public String getLanguage();

@Nullable
public String getTitle();

@Nullable
public String getDescription();

@Nullable
public Uri getImageUrl();

@Nullable
public Uri getPromoImageUrl();

@Nullable
public ProductSubscription getProductSubscription();

}

● getProductId() — product identifier;
● getProductType() — product type;
● getProductStatus() — product status;
● getPriceLabel() — formatted product price, including currency symbol in [language];
● getPrice() — price in minimum units (kopecks);
● getCurrency() — ISO 4217 currency code;
● getLanguage() — language specified using BCP 47 encoding;
● getTitle() — product title in [language];
● getDescription() — product description in [language];
● getImageUrl() — link to the image;
● getPromoImageUrl() — link to the promotional image;
● getSubscription() —subscription’s description, returned only for products with the

subscription type.

Subscription structure:

interface ProductSubscription {
@Nullable
public SubscriptionPeriod getSubscriptionPeriod();

@Nullable

265

public SubscriptionPeriod getFreeTrialPeriod();

@Nullable
public SubscriptionPeriod getGracePeriod();

@Nullable
public String getIntroductoryPrice();

@Nullable
public String getIntroductoryPriceAmount();

@Nullable
public String getIntroductoryPricePeriod();

}

● getsubscriptionPeriod — subscription period;
● getfreeTrialPeriod — trial subscription period;
● getgracePeriod — subscription grace period;
● getintroductoryPrice — formatted introductory subscription price, including the currency

symbol, in product:language;
● getintroductoryPriceAmount — introductory price in minor currency units (in kopecks);
● getintroductoryPricePeriod — introductory price settlement period.

Subscription period structure:

interface SubscriptionPeriod {
int getYears();

int getMonths();

int getDays();
}

● years — number of years;
● months — number of months;
● days — number of days.

266

How to get the user's list of purchases

Use the getPurchases method to get the user's list of purchases:

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.getPurchases().addOnCompleteListener(new
OnCompleteListener<PurchasesResponse>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(PurchasesResponse purchasesResponse) {

// Process success
}

});

Purchase Structure:

interface Purchase {
@Nullable
public String getPurchaseId();

public String getProductId();

@Nullable
public ProductType getProductType();

@Nullable
public String getInvoiceId();

@Nullable
public String getDescription();

@Nullable
public String getLanguage();

@Nullable

267

public Date getPurchaseTime();

@Nullable
public String getOrderId();

@Nullable
public String getAmountLabel();

@Nullable
public Integer getAmount();

@Nullable
public String getCurrency();

@Nullable
public Integer getQuantity();

@Nullable
public PurchaseState getPurchaseState();

@Nullable
public String getDeveloperPayload();

@Nullable
public String getSubscriptionToken();

}

● getPurchaseId() — purchase ID;
● getPurchaseId()— product identifier;
● getProductType() — product type;
● getInvoiceId() — invoice ID;
● getDescription() — purchase description;
● getLanguage() — language specified with the BCP 47 encoding;
● getPurchaseTime() — purchase time (in RFC 3339 format);
● getOrderId() — unique payment identifier generated by the application (uuid);
● getAmountLabel() — formatted purchase price, including the currency symbol in

[language];
● getAmount() — price in minor units of currency;
● getCurrency() — ISO 4217 currency code;
● getQuantity() — number of products;
● getPurchaseState() — purchase status:

268

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● getDeveloperPayload() — line specified by the developer that contains additional
information about the order;

● getSubscriptionToken() — token for validating a purchase on the server.

The purchaseState model:

A status-based subscription purchase model (SUBSCRIPTIONS):

269

A status-based non-consumables subscription (NON-CONSUMABLES):

A status-based consumables subscription (CONSUMABLES):

270

How to get purchase info

Use the getPurchaseInfo method to get information about purchases:

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.getPurchaseInfo("purchaseId").addOnCompleteListene
r(new OnCompleteListener<PurchaseInfoResponse>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(PurchaseInfoResponse result) {

// Process success
}

});

Product Structure:

interface Purchase {
@Nullable
public String getPurchaseId();

public String getProductId();

@Nullable
public ProductType getProductType();

@Nullable
public String getInvoiceId();

@Nullable
public String getDescription();

@Nullable
public String getLanguage();

@Nullable
public Date getPurchaseTime();

271

@Nullable
public String getOrderId();

@Nullable
public String getAmountLabel();

@Nullable
public Integer getAmount();

@Nullable
public String getCurrency();

@Nullable
public Integer getQuantity();

@Nullable
public PurchaseState getPurchaseState();

@Nullable
public String getDeveloperPayload();

@Nullable
public String getSubscriptionToken();

}

● getPurchaseId() — purchase ID;
● getProductId() — product identifier;
● getProductType() — product type;
● getInvoiceId() — invoice ID;
● getDescription() — purchase description;
● getLanguage() — language specified with the BCP 47 encoding;
● getPurchaseTime() — purchase time (in RFC 3339 format);
● getOrderId() — unique payment identifier generated by the application (uuid);
● getAmountLabel() — formatted purchase price, including the currency symbol in

[language];
● getAmount() — price in minor units of currency;
● getCurrency() — ISO 4217 currency code;
● getQuantity() — number of products;
● getPurchaseState() — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;

272

■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● getDeveloperPayload() — line specified by the developer that contains additional
information about the order;

● getDeveloperPayload() — token for server purchase validation.

The purchaseState model:

A status-based subscription purchase model (SUBSCRIPTIONS):

273

A status-based non-consumables subscription (NON-CONSUMABLES):

A status-based consumables subscription (CONSUMABLES):

274

How to handle purchases

Use the purchaseProduct method to call a product purchase:

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.purchaseProduct("productId").addOnCompleteListener
(new OnCompleteListener<PaymentResult>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(PaymentResult paymentResult) {

// Process PaymentResult
}

});

● productId: String — product ID;
● orderId: String — order ID, generated by AnyApp (optional. If not specified, it is

generated automatically);
● quantity: Int — number of products (optional);
● developerPayload — additional information from the AnyApp developer (optional).

Payment result structure:

interface PaymentResult {

interface Success extends PaymentResult {
@Nullable
public String getOrderId();

public String getPurchaseId();

public String getProductId();

public String getInvoiceId();

@Nullable

275

public String getSubscriptionToken();
}

interface Failure extends PaymentResult {
@Nullable
public String getPurchaseId();
@Nullable
public String getInvoiceId();
@Nullable
public String getOrderId();
@Nullable
public Integer getQuantity();
@Nullable
public String getProductId();
@Nullable
public Integer getErrorCode();

}

interface Cancelled extends PaymentResult {
public String getPurchaseId();

}

interface InvalidPaymentState extends PaymentResult {}
}

● Success — product successfully purchased;
● Failure — product purchase error;
● Canceled — purchase cancelled;
● InvalidPaymentState — payment SDK error. May occur in case of incorrect reverse

deeplink.

Server purchase validation

For server purchase validation you can use the subscriptionToken in the PurchaseResult
returned by purchaseProduct in case of a successful purchase.

SubscriptionToken consists of invoiceId of purchase and userId of RuStore, written with a
dot: "$invoiceId.$userId"

276

RuStoreBillingClient.INSTANCE.getPurchases().purchaseProduct(produc
tId).addOnSuccessListener(paymentResult -> {

if (paymentResult instanceof PaymentResult.PurchaseResult) {
String subscriptionToken = ((PaymentResult.PurchaseResult)

paymentResult).getSubscriptionToken();
yourApi.validate(subscriptionToken);

}
});

You can also get a subscriptionToken in the Purchase entity. The Purchase entity can be
retrieved using the getPurchases() method:

RuStoreBillingClient.INSTANCE.getPurchases().getPurchases().addOnSu
ccessListener(purchasesResponse -> {

for (Purchase purchase : purchasesResponse.getPurchases()) {
yourApi.validate(purchase.getSubscriptionToken());

}
});

277

Purchase confirmation

RuStore consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation if they are in the
PurchaseState.PAID state.

You can use the confirmPurchase method to confirm the purchase:

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.confirmPurchase("purchaseId",
"developerPayload").addOnCompleteListener(new
OnCompleteListener<Unit>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(Unit result) {

// Process success
}

});

● purchaseId — purchase ID;
● developerPayload — line specified by the developer that contains additional

information about the order (optional).

Purchase cancellation

You can use the deletePurchase method to cancel the purchase:

278

PurchasesUseCase purchasesUseCase = billingClient.getPurchases();
purchasesUseCase.deletePurchase("purchaseId").addOnCompleteListener
(new OnCompleteListener<Unit>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(Unit result) {

// Process success
}

});

● purchaseId — purchase ID.
Note. Use this method if your app logic is related to purchase cancellation. The purchase is
canceled automatically after a 20-min timeout, or upon a second purchase from the same
customer.

279

Consumption and cancellation scenario

Uncompleted payments must be processed by the AnyApp developer.

The purchase cancellation method (deletePurchase) should be used if:

1. The method of getting the list of products (getPurchases) returned the purchase
status as follows:

○ PurchaseState.CREATED;
○ PurchaseState.INVOICE_CREATED;

Note. In some cases, after paying through a banking app (SBP, SberPay, TinkoffPay, etc.),
the purchase status may still return PurchaseState.INVOICE_CREATED when you
subsequently return to AnyApp. This is caused by the purchase processing time by the
bank. Therefore, the developer needs to correctly link the shopping list obtaining function to
the life cycle on the screen.

To solve this problem, you can cancel a purchase in the
PurchaseState.INVOICE_CREATED status only through user interaction with the
application. For example, create a separate button for this purpose.

2. The purchase method (purchaseProduct) returned PaymentResult.Cancelled.

3. The purchase method (purchaseProduct) returned PaymentResult.Failure.

Use product consumption method (confirmPurchase) if the method the purchase obtaining
method (getPurchases) returns a CONSUMABLE product and with the status
PurchaseState.PAID.

280

Event Logging

If you want to log payment library events add externalPaymentLoggerFactory and
debugLogs parameters (these parameters are optional for initialization) when calling
RuStoreBillingClient.init:

public class App extends Application {

@Override
public void onCreate() {

super.onCreate();
final Application application = this;
final String consoleApplicationId = "111111";
final String deeplinkScheme = "yourappscheme";
final ExternalPaymentLoggerFactory

externalPaymentLoggerFactory = (tag) -> new PaymentLogger(tag);
final boolean debugLogs = true;
RuStoreBillingClient.INSTANCE.init(application,

consoleApplicationId, deeplinkScheme, externalPaymentLoggerFactory,
debugLogs);

}

public class PaymentLogger implements ExternalPaymentLogger {

private final String tag;

public PaymentLogger(String tag) {
this.tag = tag;

}

@Override
public void d(@Nullable Throwable throwable, @NonNull

Function0<String> function0) {
Log.d(tag, function0.invoke());

}

@Override
public void e(@Nullable Throwable throwable, @NonNull

Function0<String> function0) {
Log.e(tag, function0.invoke());

}

281

@Override
public void i(@Nullable Throwable throwable, @NonNull

Function0<String> function0) {
Log.i(tag, function0.invoke());

}

@Override
public void v(@Nullable Throwable throwable, @NonNull

Function0<String> function0) {
Log.v(tag, function0.invoke());

}

@Override
public void w(@Nullable Throwable throwable, @NonNull

Function0<String> function0) {
Log.w(tag, function0.invoke());

}
}

}

Logging processing parameters:

● externalPaymentLoggerFactory — interface that allows you to create a logger that
sends the library logs to the host application;

● debugLogs — enables logs (logs will be automatically disabled for Release builds).

PaymentLogger — example of payment event logging implementation.

282

Theme Changing
The SDK supports dynamic theme changing through the BillingClientThemeProvider provider
interface:

final Context context = getContext();
final String consoleApplicationId = "111111";
final String deeplinkScheme = "yourappscheme";
final BillingClientThemeProvider themeProvider = BillingClientThemeProviderImpl();

RuStoreBillingClient billingClient = RuStoreBillingClientFactory.INSTANCE.create(
context,
consoleApplicationId,
deeplinkScheme,
themeProvider

);

public class BillingClientThemeProviderImpl implements BillingClientThemeProvider {

@NonNull
@Override
public BillingClientTheme provide() {

boolean darkTheme = ...;
if (darkTheme) {

return BillingClientTheme.Dark;
} else {

return BillingClientTheme.Light;
}

}
}

283

Error handling

Possible errors:

● RuStoreNotInstalledException() — RuStore is not installed on the user's device;
● RuStoreOutdatedException() — RuStore, installed on the user's device, does not

support payment processing functions;
● RuStoreUserUnauthorizedException() — user is not authorized on the RuStore;
● RuStoreApplicationBannedException() — your application is blocked on the

RuStore;
● RuStoreUserBannedException() — user is blocked on the RuStore;
● RuStoreException(message: String) — basic RuStore error, from which all other

errors are inherited.

When calling the RuStoreBillingClient.purchases.purchaseProduct() method, errors are
handled automatically.

You can use the resolveForBilling method to show an error dialog to the user:

BillingRuStoreExceptionExtKt.resolveForBilling(exception,
getContext());

284

Migration to Payments SDK from v.1.x.x to v3.x.x

General

In version 3.0.0, the purchase model in PaymentResult was significantly modified.

Follow the steps below to switch to the new SDK version smoothly.

Dependency update

To update the dependency, call the billingclient version in the dependencies block of your
build.gradle:

build.gradle

dependencies {
implementation("ru.rustore.sdk:billingclient:3.0.0")

}

285

Model update

Getting List of Products

The products list model was significantly modified. From now on getProducts() returns the list
of products:

ProductsUseCase productsUseCase = billingClient.getProducts();
productsUseCase.getProducts(Arrays.asList("id1",
"id2")).addOnCompleteListener(new
OnCompleteListener<List<Product>>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(List<Product> products) {

// Process success
}

});

At that, the product and the error model remained unchanged.

286

Getting List of Purchases

The list of purchases model was significantly modified. From now on, getPurchases() returns
the list of purchases:

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();
purchasesUseCase.getPurchases().addOnCompleteListener(new
OnCompleteListener<List<Purchase>>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(List<Purchase> purchases) {

// Process success
}

});

At that, the product and the error model remained unchanged.

287

Getting Product Info

The purchase info method was significantly modified. From now on, getPurchaseInfo() returns
the purchase method:

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();
purchasesUseCase.getPurchaseInfo("purchaseId").addOnCompleteLis
tener(new OnCompleteListener<Purchase>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(Purchase purchase) {

// Process success
}

});

The error model remained unchanged.

Purchases

In this version, the purchase model was also modified. The new model is represented as
follows:

288

interface PaymentResult {

interface Success extends PaymentResult {
@Nullable
public String getOrderId();

public String getPurchaseId();

public String getProductId();

public String getInvoiceId();

@Nullable
public String getSubscriptionToken();

}

interface Failure extends PaymentResult {
@Nullable
public String getPurchaseId();

@Nullable
public String getInvoiceId();

@Nullable
public String getOrderId();

@Nullable
public Integer getQuantity();

@Nullable
public String getProductId();

@Nullable
public Integer getErrorCode();

}

interface Cancelled extends PaymentResult {
public String getPurchaseId();

}

289

interface InvalidPaymentState extends PaymentResult {}
}

where:

● Success — digital product purchased successfully.
● Failure — product purchase error.
● Cancelled — product purchase canceled.
● InvalidPaymentState — SDK error. Returned in case of deeplink processing errors.

Please note that the product purchase and cancellation scenario were successfully modified.

Product consumption scenario

The product purchase scenario was significantly changed. The purchase method can now
return an error:

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();
purchasesUseCase.confirmPurchase("purchaseId",
"developerPayload").addOnCompleteListener(new
OnCompleteListener<Unit>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(Unit result) {

// Process success
}

});

Product cancellation scenario

290

The product cancellation scenario was significantly changed. The cancellation method can now
return an error:

PurchasesUseCase purchasesUseCase =
billingClient.getPurchases();
purchasesUseCase.deletePurchase("purchaseId").addOnCompleteList
ener(new OnCompleteListener<Unit>() {

@Override
public void onFailure(@NonNull Throwable throwable) {

// Process error
}

@Override
public void onSuccess(Unit result) {

// Process success
}

});

Product Purchase and Cancellation Scenario

Modifications in the product led to changes in the product purchase and cancellation scenario.

Use deletePurchase method if:

1. The getPurchases method returned an error with the following status:
PurchaseState.CREATED or PurchaseState.INVOICE_CREATED.

Note. In some cases, after paying through a banking app (SBP, SberPay, TinkoffPay, etc.),
the purchase status may still return PurchaseState.INVOICE_CREATED when you
subsequently return to AnyApp. This is caused by the purchase processing time by the
bank. Therefore, the developer needs to correctly link the shopping list obtaining function to
the life cycle on the screen.

2. The purchaseProduct method returned PaymentResult.Cancelled.

291

3. The purchaseProduct method returned PaymentResult.Failure.

Use confirmPurchase if getPurchases returned a CONSUMABLE type error with
PurchaseState.PAID status.

RuStore SDK payments Release Notes

SDK version 2.2.0

● Added dynamic theme change functionality (light and dark);
● Stabilized library;
● Fixed deeplink payment problem.

SDK version 2.1.1

● Security updates.

SDK version 2.1.0

● Changed response models:
- getting a list of products
- getting a shopping list
- product purchase
- purchases consumption
- purchases cancellation

● Improved payment dialog.

SDK version 1.1.1

● Fixed await() method for Task API.

SDK version 1.1.0

● Payment via TinkoffPay.
● Saving card details during payments.
● Improved appearance and behavior of the payment dialog.
● Removed unnecessary dependencies and uses-permissions
● PurchaseResult model supplemented with a new invoiceId field.

292

SDK Version 1.0.0

● Transition from singleton to instance creation: RuStoreBillingClient.init() replaced by
RuStoreBillingClientFactory.create().

● Singleton operation methods (init, products, purchases, getSingleton) are marked as
deprecated and will be removed in future versions.

Unity
General Information 185
Payment functions availability 188
How to get the user's list of products 189
How to get the user's list of purchases 192
How to handle purchases 197
Purchase confirmation 200
Purchase cancellation 202
Confirmation and cancellation scenario 204
Error handling 205
Unity plug-in revision history 207

293

General Information

Download the Unity plug-in to integrate payments in your app.
Comply with the terms below to ensure proper payment integration:

1. The RuStore app must be installed on the user's device.
2. The user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

How to integrate it in your project

To get started, you need to download the RuStore Billing SDK and import it into your project
(Assets → Import Package → Custom Package). Dependencies are included automatically
using the External Dependency Manager (included in the SDK).

To correctly handle SDK dependencies, you must set the following settings:

- Edit -> Project Settings -> Player Settings -> Publishing Settings, then enable Custom
Main Gradle Template and Custom Gradle Properties Template

- Assets -> External Dependencies Manager -> Android Resolver -> Settings, then enable
Use Jetifier, Patch mainTemplate.gradle, Patch gradleTemplate.properties

After setting up, be sure complete Assets -> External Dependencies Manager -> Android
Resolver -> Force Resolve.

Minimum API level must be set to at least 24. Application minification (ProGuard/R8) is not
currently supported; it must be disabled in the project settings (File → Build Settings → Player
Settings → Publishing Settings → Minify).

Handling deeplinks in your app

To redirect a user back to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name="ru.rustore.unitysdk.RuStoreUnityActivity"

android:theme="@style/UnityThemeSelector" android:exported="true">

<intent-filter>

294

https://cloud.mail.ru/public/fp3Y/bic5ahWQQ
https://console.rustore.ru/sign-in
https://cloud.mail.ru/public/YPGh/SseqveYDP

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE"

/>
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

Next, extend the UnityPlayerActivity class and add incoming intent processing to onNewIntent:

package ru.rustore.unitysdk;

import android.os.Bundle;
import android.content.Intent;
import ru.rustore.unitysdk.billingclient.RuStoreUnityBillingClient;
import com.unity3d.player.UnityPlayerActivity;

public class RuStoreUnityActivity extends UnityPlayerActivity {

@Override protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if (savedInstanceState == null) {
RuStoreUnityBillingClient.onNewIntent(getIntent());

}
}

@Override protected void onNewIntent(Intent intent) {
super.onNewIntent(intent);
RuStoreUnityBillingClient.onNewIntent(intent);

295

}
}

The Java file with UnityPlayerActivity extension code must be placed in the Assets folder of the
project. If you already have your own UnityPlayerActivity extension, you need to transfer the
code of the onCreate and onNewIntent functions to it.

How to initialize a library

You must initialize the library before calling its methods. The library initialization parameters
are configured in the Unity editor. In the editor menu select Window → RuStoreSDK →
Settings → Billing Client.

RuStoreBillingClient.Instance.Init();

Once you’re required other settings, you can pass them directly from the code:

var config = new RuStoreBillingClientConfig() {
consoleApplicationId = "11111",
deeplinkPrefix = "yourappscheme",
allowNativeErrorHandling = true,
enableLogs = true

};

RuStoreBillingClient.Instance.Init(config);

● consoleApplicationId — an application code from the RuStore Console. (Example:
https://console.rustore.ru/apps/111111);

● deeplinkPrefix — an url used for deeplink. Make sure your use a unique name, for
exampl: yourappscheme);

● allowNativeErrorHandling — allows error handling in a native SDK (see more in the
Error handling section):

● enableLogs — enable logs.

Make sure that the deeplink scheme passed to deeplinkScheme matches the one specified
in AndroidManifest.xml under "Handling deeplinks in your app".

If you need to check that the library is initialized, use RuStoreBillingClient.isInitialized, which
returns true if the library is initialized and false if the init function has not been called yet.

var isInitialized = RuStoreBillingClient.Instance.IsIninialized;

296

https://console.rustore.ru/sign-in
https://console.rustore.ru/apps/752063
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/sdk_payments_unity/error_processing
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/sdk_payments_unity/error_processing

297

Payment functions availability

To check whether your app supports payment functions, call the checkPurchasesAvailability
method. This method checks the following conditions:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. The app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, onSuccess displays FeatureAvailabilityResult.isAvailable == true.
Otherwise, it returns FeatureAvailabilityResult.isAvailable == false, where
FeatureAvailabilityResult.cause indicates an unfulfilled condition. All possible
RuStoreException errors are described in Error Handling. Other errors (e.g. "No internet
connection") are processed by onFailure.

RuStoreBillingClient.Instance.CheckPurchasesAvailability(
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

if (response.isAvailable) {
// Process purchases available

} else {
// Process purchases unavailable

}
});

298

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/SDK-connecting-payments/Error-processing

How to get the user's list of products

Use the getProducts method to get the user's list of products

RuStoreBillingClient.Instance.GetProducts(productIds,
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

// Process response
});

● string[] productIds — list of product IDs.

The method returns:

● List<Product> response — list of products.

Product Structure:

public class Product {

public enum ProductStatus {

ACTIVE,
INACTIVE

}

public enum ProductType {

NON_CONSUMABLE,
CONSUMABLE,
SUBSCRIPTION

}

public string productId;
public ProductType productType;
public ProductStatus productStatus;
public string priceLabel;
public int price;

299

public string currency;
public string language;
public string title;
public string description;
public string imageUrl;
public string promoImageUrl;
public ProductSubscription subscription;

}

● productId — product identifier;
● productType — product type;
● productStatus — product status;
● priceLable — formatted product price, including the currency symbol in [language];
● price — price in minor units (in kopecks);
● currency — ISO 4217 currency code;
● language — language specified with the BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● imageUrl — link to the image;
● promoImageUrl — link to the promo image;
● subscription — subscription description, returned only for products with the

subscription type.

Subscription structure:

public class ProductSubscription {

public SubscriptionPeriod subscriptionPeriod;
public SubscriptionPeriod freeTrialPeriod;
public SubscriptionPeriod gracePeriod;
public string introductoryPrice;
public string introductoryPriceAmount;
public SubscriptionPeriod introductoryPricePeriod;

}

● subscriptionPeriod — subscription period;
● freeTrialPeriod — trial subscription period;
● gracePeriod — grade subscription period;

300

● introductoryPrice — formatted introductory subscription price, including the currency
symbol in product language;

● introductoryPriceAmount — introductory price in minor currency units (in kopecks);
● introductoryPricePeriod — introductory price settlement period.

Subscription period structure:

public class SubscriptionPeriod {

public int years;
public int months;
public int days;

}

● years — number of years;
● months — number of months;
● days — number of days.

How to get the user's list of purchases

Use the getPurchases method to get the user's list of purchases:

RuStoreBillingClient.Instance.GetPurchases(
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

// Process response
});

The method returns:

● List<Purchase> response — list of products.

Purchase Structure:

public class Purchase {

public enum PurchaseState
{

301

CREATED,
INVOICE_CREATED,
CONFIRMED,
PAID,
CANCELLED,
CONSUMED,
CLOSED

}

public string purchaseId;
public string productId;
public string description;
public string language;
public DateTime purchaseTime;
public string orderId;
public string amountLabel;
public int amount;
public string currency;
public int quantity;
public PurchaseState purchaseState;
public string developerPayload;
public string subscriptionToken;

}

● purchaseId — purchase ID;
● productId — product identifier;
● productType — product type;
● invoiceId — invoice ID;
● description — purchase description;
● language — language specified with the BCP 47 encoding;
● purchaseTime — purchase time (in RFC 3339 format);
● orderId — unique payment identifier generated by the application (uuid);
● amountLable — formatted purchase price, including the currency symbol in

[language];
● amount — price in minor units of currency;
● currency — ISO 4217 currency code;
● quantity — number of products;
● purchaseState — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;

302

■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● developerPayload — line specified by the developer that contains additional
information about the order;

303

The purchaseState model:

A status-based subscription purchase model (SUBSCRIPTIONS):

A status-based non-consumables subscription (NON-CONSUMABLES):

304

A status-based consumables subscription (CONSUMABLES):

305

How to handle purchases

Use the purchaseProduct method to call a product purchase:

RuStoreBillingClient.Instance.PurchaseProduct(
productId: "productId",
quantity: 1,
developerPayload: "",
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

switch (response) {
case PaymentSuccess paymentSuccess:

// Process PaymentSuccess
break;

case PaymentCancelled paymentCancelled:
// Process PaymentCancelled
break;

case PaymentFailure paymentFailure:
// Process PaymentFailure
break;

case InvalidPaymentState invalidPaymentState:
// Process InvalidPaymentState
break;

}
});

● string productId — product identifier;
● string orderId — order identifier, generated by the AnyApp;
● int quantity — products quantity;
● string developerPayload — additional information received from the AnyApp

developer.

Payment result structure:

public class PaymentResult {
}

306

public class PaymentSuccess : PaymentResult {

public string orderId;
public string purchaseId;
public string productId;
public string invoiceId;
public string subscriptionToken;

}

public class PaymentCancelled : PaymentResult {

public string purchaseId;
}

public class PaymentFailure : PaymentResult {

public string purchaseId;
public string invoiceId;
public string orderId;
public int quantity;
public string productId;
public int errorCode;

}

public class InvalidPaymentState : PaymentResult {
}

● PaymentSuccess — product successfully purchased;
● PaymentCancelled — purchase canceled;
● PaymentFailure — product purchase error;
● InvalidPaymentState — payment SDK error. May occur in case of an incorrect

reverse deeplink.

Purchase confirmation

The RuStore application consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

307

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation once they get the
PurchaseState.PAID state.

You can use the ConfirmPurchase method to consume the purchase:

RuStoreBillingClient.Instance.ConfirmPurchase(
purchaseId: "purchaseId",
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

// Process success
}

);

● purchaseId — purchase ID;

308

Purchase cancellation

You can use the DeletePurchase method to cancel the purchase:

RuStoreBillingClient.Instance.DeletePurchase(
purchaseId: "purchaseId",
onFailure: (error) => {

// Process error
},
onSuccess: () => {

// Process success
}

);

● purchaseId — purchase ID.

Note. Use this method if your app logic is related to purchase cancellation. The purchase is
canceled automatically after a 20-min timeout, or upon a second purchase from the same
customer.

309

Confirmation and cancellation scenario

Uncompleted payments must be processed by the AnyApp developer.

The purchase cancellation method should be used if:

1. The method of getting the list of products returned the purchase status as follows:
○ PurchaseState.CREATED;
○ PurchaseState.INVOICE_CREATED;

2. If purchaseProduct returned PaymentResult.InvalidPurchase.
3. If purchaseProduct returned PaymentResult.PurchaseResult that contains the

following PaymentFinishCode:
○ CLOSED_BY_USER — canceled by the user;
○ UNHANDLED_FORM_ERROR — unknown error;
○ PAYMENT_TIMEOUT — timeout payment error;
○ DECLINED_BY_SERVER — rejected by server;
○ RESULT_UNKNOWN — unknown payment status.

The confirmPurchase method should be used if:

1. The getPurchases method returned the purchase status as follows:
○ PurchaseState.PAID.

2. The purchaseProduct method returned PaymentResult.PurchaseResult that contains
the following PaymentFinishCode:

○ SUCCESSFUL_PAYMENT — successful payment.

310

Error handling

All the errors that may occur are processed by onFailure.

Error structure:
public class RuStoreError {

public string name;
public string description;

}

● name — error name;
● description — error description.

Possible errors:

● RuStoreNotInstalledException — RuStore is not installed on the user's device;
● RuStoreOutdatedException — RuStore, installed on the user's device, does not

support payment processing functions;
● RuStoreUserUnauthorizedException — user is not authorized on the RuStore;
● RuStoreApplicationBannedException — your application is blocked on the RuStore;
● RuStoreUserBannedException — user is blocked on the RuStore;
● RuStoreException — basic RuStore error, from which all other errors are inherited.

When calling the PurchaseProduct method, errors are handled automatically.

If allowNativeErrorHandling == true occurs during SDK initialization, it not only calls the
onFailure method but also returns the error to the resolveForBilling method in native SDK in
order to demonstrate the error to the user:

public fun RuStoreException.resolveForBilling(context: Context)

Once initialized, it can be changed by setting the AllowNativeErrorHandling property:

RuStoreBillingClient.Instance.AllowNativeErrorHandling = false;

311

Unity plug-in revision history

Plug-in version 2.2.0

● Internal update.

Plug-in version 2.1.1

● Changed return value in GetProducts() for getting a list of products.
● Changed return value in GetPurchases() for getting a shopping list.
● Changed return value in GetPurchaseInfo() for getting purchase information.
● Changed value format in ConfirmPurchase().
● Changed return value in DeletePurchase() for deleting a purchase.
● Changed return value format in PurchaseProduct().

Plug-in version 1.1.1

● Added SDK configuration functionality in the Unity editor.
● orderId in PurchaseProduct() made optional.
● Added invoiceId field, invoice identifier to the Purchase and PurchaseResult classes.
● Fixed SDK initialization from Activity.

Plug-in version 0.1.9

● RuStoreBillingClientConfig.enableLogs flag added to enable logging.
● CallbackHandler initialization error fixed.

Plug-in version 0.1.8

● subscriptionToken field added to Purchase for server-side purchase validation.

Plug-in version 0.1.7

● Internal plug-in update.

312

Flutter
General Information 209
Payment functions availability 212
How to get the list of products 213
How to get the user's list of purchases 217
How to handle purchases 220
Purchase confirmation 223

313

General Information

Example of implementation
Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline
Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your app user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

How to add the package to your project

Run the command below to add the application package to your project:

flutter pub add flutter_rustore_billing

This command adds the following line to pubspec.yaml.

dependencies:
flutter_rustore_billing: ^3.0.0

Handling deeplinks in your app

To redirect a user back to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".sample.MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />

314

https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://console.rustore.ru/sign-in

<data android:scheme="yourappscheme" />
</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

This scheme must match the deeplinkScheme parameter passed to initialize().

How to initialize a library

Initialize the library before calling its methods. You can initialize the library using the
RustoreBillingClient.initialize() method as follows:

RustoreBillingClient.initialize(
"123456",
"yourappscheme://iamback",

).then((value) {
print("initialize success: $value");

}, onError: (err) {
print("initialize err: $err");

});

● 123456 — application code from the RuStore Console (example:
https://console.rustore.ru/apps/123456).

● yourappscheme://iamback — deeplink scheme which is used to redirect a user back
to your app after he completes payment via a this-party app (for example, SberPay
or FPS). Therefore SDK generates its host to the deeplink scheme.

The deeplink scheme passed to deeplinkScheme must correspond to the scheme specified
in the Handling deeplinks section of the AndroidManifest.xml file.

315

https://console.rustore.ru/apps/752063

Payment functions availability

Please ensure compliance with the conditions below to check whether your app supports
payment functions.

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all the above conditions are met, the RustoreBillingClient.available() method returns true.

RustoreBillingClient.available().then((value) {
print("available success $value");

}, onError: (err) {
print("available err: $err");

});

316

https://console.rustore.ru/sign-in

How to get the list of products

Use the RustoreBillingClient.products(ids) method to get a list of products:

RustoreBillingClient.products(ids).then((response) {
for (final product in response.products) {
print(product?.productId);

}
}, onError: (err) {

print("products err: $err");
});

● ids: List<String?> — list of product identifiers.

The method returns ProductsResponse:

class ProductsResponse {
int code;
String? errorMessage;
String? errorDescription;
String? traceId;
List<Product?> products;
List<DigitalShopGeneralError?> errors;

}

● code — response code;
● errorMessage — error method;
● errorDescription — error description;
● traceId — error ID;
● errors — list of errors;
● products — list of products.

Error structure DigitalShopGeneralError:

class DigitalShopGeneralError {
String? name;
int? code;

317

String? description
}

● name — error name;
● code — error code;
● description — error description.

Product Structure:

class Product {
String productId;
String? productType;
String productStatus;
String? priceLabel;
int? price;
String? currency;
String? language;
String? title;
String? description;
String? imageUrl;
String? promoImageUrl;
Subscription? subscription;

}

● productId — product ID;
● productType — product type;
● productStatus — product status;
● priceLable — formatted product price, including the currency symbol in [language];
● price — price in minor units (in kopecks);
● currency — ISO 4217 currency code;
● language — language specified with the BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● imageUrl — link to the image;
● promoImageUrl — link to the promo image;
● subscription — subscription description, returned only for products with the

subscription type.

Subscription Structure:

class Subscription {

318

SubscriptionPeriod? subscriptionPeriod;
SubscriptionPeriod? freeTrialPeriod;
SubscriptionPeriod? gracePeriod;
String? introductoryPrice;
String? introductoryPriceAmount;
SubscriptionPeriod? introductoryPricePeriod;

}

● subscriptionPeriod — subscription period;
● freeTrialPeriod — trial subscription period;
● gracePeriod — subscription grace period;
● introductoryPrice — formatted introductory subscription price, including the currency

symbol, in product:language;
● introductoryPriceAmount — introductory price in minor units of currency (in kopecks);
● introductoryPricePeriod — calculated period of the introductory price.

SubscriptionPeriod structure:

class SubscriptionPeriod {
int years;
int months;
int days;

}

● years — number of years;
● months — number of months;
● days — number of days.

319

How to get the user's list of purchases

Use the RustoreBillingClient.purchases() method to get the user's list of purchases:

RustoreBillingClient.purchases().then((response) {
for (final product in response.purchases) {
print(product?.purchaseId);

}
}, onError: (err) {

print("purchases err: $err");
});

The method returns PurchasesResponse:

class PurchasesResponse {
int code;
String? errorMessage;
String? errorDescription;
String? traceId;
List<Purchase?> purchases;
List<DigitalShopGeneralError?> errors;

}

● code — response code;
● errorMessage — error method;
● errorDescription — error description;
● traceId — error ID;
● errors — list of errors;
● purchases — list of purchases.

DigitalShopGeneralError error structure:

class DigitalShopGeneralError {
String? name;
int? code;
String? description;

}

● name — error name;
● code — error code;
● description — error description.

320

Purchase Structure:

class Purchase {
String? purchaseId;
String? productId;
String? description;
String? language;
String? purchaseTime;
String? orderId;
String? amountLabel;
int? amount;
String? currency;
int? quantity;
String? purchaseState;
String? developerPayload;
String? invoiceId;
String? subscriptionToken;

}

● purchaseId — purchase ID;
● productId — product ID;
● description — purchase description;
● language — language specified with the BCP 47 encoding;
● purchaseTime — purchase time (in RFC 3339 format);
● orderId — unique payment identifier generated by the application (uuid);
● amountLable — formatted purchase price, including the currency symbol in

[language];
● amount — price in minor units of currency;
● currency — ISO 4217 currency code;
● quantity — number of products;
● purchaseState — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● developerPayload — line specified by the developer that contains additional
information about the order.

● invoiceId — invoice ID;

321

● subscriptionToken — server validation token.

322

How to handle purchases

Use the RustoreBillingClient.purchase(id) method to call a product purchase:

RustoreBillingClient.purchase(id).then((response) {
print("purchase success: $response");

}, onError: (err) {
print("purchase err: $err");

});

● id — product ID.

Structure PaymentResult:

class PaymentResult {
SuccessInvoice? successInvoice;
InvalidInvoice? invalidInvoice;
SuccessPurchase? successPurchase;
InvalidPurchase? invalidPurchase;

}

SuccessInvoice Structure:

class SuccessInvoice {
String invoiceId;
String finishCode;

}

InvalidInvoice Structure:

class InvalidInvoice {
String? invoiceId;

}

SuccessPurchase Structure:

323

class SuccessPurchase {
String finishCode;
String? orderId;
String purchaseId;
String productId;

}

InvalidPurchase Structure:

class InvalidPurchase {
String? purchaseId;
String? invoiceId;
String? orderId;
int? quantity;
String? productId;
int? errorCode;

}

● SuccessInvoice — payment successfully completed;
● InvalidInvoice — payment completed without an invoice. It may possibly be caused

by an error in the invoice (such as an empty line);
● SuccessPurchase — product has been paid for successfully;
● InvalidPurchase — failed to complete payment.

finishCode may return one the following statuses:

● SUCCESSFUL_PAYMENT — successful payment;
● CLOSED_BY_USER — cancelled by the user;
● UNHANDLED_FORM_ERROR — unknown error;
● PAYMENT_TIMEOUT — timeout payment error;
● DECLINED_BY_SERVER — rejected by server;
● RESULT_UNKNOWN — unknown payment status.

324

Purchase confirmation

The RuStore app features the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the app);
● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling

ads in an app);
● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a

streaming service subscription).

Only CONSUMABLE type products require confirmation once they are in the
PurchaseState.PAID state.

You can use the confirmPurchase method to confirm the purchase:

val purchasesUseCase: PurchasesUseCase = billingClient.purchases
purchasesUseCase.confirmPurchase(purchaseId = "purchaseId",
developerPayload = null)

.addOnSuccessListener {
// Process success

}.addOnFailureListener { throwable: Throwable ->
// Process error

}

● purchaseId is a purchase ID;
● developerPayload refers to a line with additional info (optional).

325

Unreal Engine

General Information 1
Calling CheckPurchasesAvailability 5
Getting the List of Purchases 16
Getting Purchase Info 23
How to handle purchases 26
Consumption and cancellation scenario 45
Error handling 46

General Information

Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

Embed in your project

To have the Billing SDK enabled, you need to download the Unreal Engine plugins
“RuStoreCore” and “RuStoreBilling” from the official RuStore repository on gitflic. Then
place them in the “Plugins” folder inside the project. Once there, the “RuStore Core” and
“RuStore Billing” plugins will appear in the list of plugins (Edit → Plugins → Project →
Mobile). Next, connect the “RuStoreCore” and “RuStoreBilling” modules in the
YourProject.Build.cs file (PublicDependencyModuleName).

When building an Android app, the Minimum API level must be set to at least 24.
Application minification (ProGuard/R8) is not currently supported. All necessary gradle
settings and project dependencies are written in “RuStoreCore_UPL_Android.xml” and
“RuStoreBilling_UPL_Android.xml”.

Handling deeplinks in your app

To redirect a user to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

326

https://console.rustore.ru/sign-in

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="yourscheme" />

</intent-filter>

where “yourscheme” is your deeplink scheme. It can be changed to another, and must
match the deeplinkSheme value specified when initializing the billing client library.

You can change “yourscheme” to your own scheme in the “RuStoreCore_UPL_Android.xml”
file.

How to initialize the library

You must initialize the library to call its method. To do this, call the
FURuStoreBillingClientConfig method:

Initialization

try {
RustoreBillingClient.initialize({
consoleApplicationId: 'appId',
deeplinkScheme: 'scheme',

});
console.log(`initialize success: ${result}`);

} catch (err) {
console.log(`initialize err: ${err}`);

}

All customer transactions are also accessible from Blueprints. Initialization example:

327

● consoleApplicationId — an application code from the RuStore Console. (Example:
https://console.rustore.ru/apps/111111);

● deeplinkPrefix — an url used for deeplink. Make sure your use a unique name, for
exampl: yourappscheme);

● allowNativeErrorHandling — allows error handling in a native SDK (see more in the
Error handling section):

● enableLogs — enable logs.

Note:
1. Make sure that the deeplink scheme passed to deeplinkScheme matches the one

specified in AndroidManifest.xml under "Handling deeplinks in your app".
2. When calling Init(), it binds the object to the scene root, and if no further work is

planned on the object, the Dispose() method must be called to free up memory.

When calling Dispose(), it unbinds the object from the root and safely completes all
requests sent.

Deinitialization

URuStoreBillingClient::Instance()->Dispose();

328

https://console.rustore.ru/sign-in
https://console.rustore.ru/apps/752063
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/sdk_payments_unity/error_processing
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/sdk_payments_unity/error_processing

If you need to check whether the library has been initialized, use
URuStoreBillingClient::Instance()->getIsInitialized(). It returns true if the library is initialized,
and false if Init has not yet been called.

Initialization check

bool isInitialized =
URuStoreBillingClient::Instance()->IsIninialized();

Payment functions availability

Use CheckPurchasesAvailability to check whether your app supports payment functions. At
that, the following conditions should be met:

1. The RuStore app must be installed on the user's device.

329

2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, onSuccess displays FeatureAvailabilityResult.isAvailable == true.
Otherwise, it returns FeatureAvailabilityResult.isAvailable == false, where
FeatureAvailabilityResult.cause indicates an unfulfilled condition. All possible
RuStoreException errors are described in Error Handling. Other errors (e.g. "No internet
connection") are processed by onFailure.

Each request receives a unique requestId within a single application launch. At that, each event
returns requestId that generated the event.

Calling CheckPurchasesAvailability

long requestId =
URuStoreBillingClient::Instance()->CheckPurchasesAvailability(

[](long requestId,
TSharedPtr<FURuStoreFeatureAvailabilityResult,
ESPMode::ThreadSafe> response) {

// Process response
},

[](long requestId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

330

https://console.rustore.ru/sign-in
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/SDK-connecting-payments/Error-processing

When working with Blueprints, you must subscribe to the
OnCheckPurchasesAvailabilityResponse and OnCheckPurchasesAvailabilityError events to
process the response.

Example of subscribing to the OnCheckPurchasesAvailabilityError event is as follows:

Example of subscribing to the OnCheckPurchasesAvailabilityResponse event:

All Blueprint-events in the plugin are broadcast. A given request can be filtered using the
requestId parameter. Each call to the CheckPurchasesAvailability method returns a unique
requestId and each Blueprint-event returns requestId of the method that generated it.

331

Getting the List of Products
Use the GetProducts method to get a list of products:

long requestId = URuStoreBillingClient::Instance()->GetProducts(
productIds,
[](long requestId, TSharedPtr<FURuStoreProductsResponse,

ESPMode::ThreadSafe> response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● TArray<FString> productIds — list of products IDs.

Blueprint implementation

332

This method returns:
GetProducts response

333

USTRUCT(BlueprintType)
struct FURuStoreProductsResponse : public FURuStoreResponseWithCode
{

GENERATED_USTRUCT_BODY()

UPROPERTY(BlueprintReadOnly)
TArray<FURuStoreProduct> products;

};

● products — list of products.

Basic response class

USTRUCT(BlueprintType)
struct FURuStoreResponseWithCode
{

GENERATED_USTRUCT_BODY()

FURuStoreResponseWithCode()
{

int code = 0;
errorMessage = "";
errorDescription = "";

}

UPROPERTY(BlueprintReadOnly)
int code;

UPROPERTY(BlueprintReadOnly)
FString errorMessage;

UPROPERTY(BlueprintReadOnly)
FString errorDescription;

UPROPERTY(BlueprintReadOnly)
TArray<FUDigitalShopGeneralError> errors;

};

● code — response code.

334

● errorMessage — error message.
● errorDescription — error description.
● errors — list of errors.

Error structure

USTRUCT(BlueprintType)

struct FURuStoreDigitalShopGeneralError

{

GENERATED_USTRUCT_BODY()

FURuStoreDigitalShopGeneralError()

{

name = "";

code = 0;

description = "";

}

UPROPERTY(BlueprintReadOnly)

FString name;

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString description;

};

● name — error name.
● code — error code.
● description — error description.

Product structure

335

USTRUCT(BlueprintType)

struct FURuStoreProduct

{

GENERATED_USTRUCT_BODY()

FURuStoreProduct()

{

productId = "";

productType = EURuStoreProductType::CONSUMABLE;

productStatus = EURuStoreProductStatus::INACTIVE;

priceLabel = "";

price = 0;

currency = "";

language = "";

title = "";

description = "";

imageUrl = "";

promoImageUrl = "";

}

UPROPERTY(BlueprintReadOnly)

FString productId;

UPROPERTY(BlueprintReadOnly)

EURuStoreProductType productType;

UPROPERTY(BlueprintReadOnly)

EURuStoreProductStatus productStatus;

UPROPERTY(BlueprintReadOnly)

FString priceLabel;

UPROPERTY(BlueprintReadOnly)

int price;

336

UPROPERTY(BlueprintReadOnly)

FString currency;

UPROPERTY(BlueprintReadOnly)

FString language;

UPROPERTY(BlueprintReadOnly)

FString title;

UPROPERTY(BlueprintReadOnly)

FString description;

UPROPERTY(BlueprintReadOnly)

FString imageUrl;

UPROPERTY(BlueprintReadOnly)

FString promoImageUrl;

UPROPERTY(BlueprintReadOnly)

FURuStoreProductSubscription subscription;

};

● product_id — product ID;
● product_type — product type;
● product_status — product status;
● price_lable — formatted product price, including currency symbol in [language];
● price — price in minimum units (in kopecks);
● currency — currency code ISO 4217;
● language — language specified using BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● image_url — image link
● promo_image_url — promotional image link;
● subscription — subscription description, returned only for subscription type products.

337

Subscription structure:

USTRUCT(BlueprintType)
struct FURuStoreProductSubscription
{

GENERATED_USTRUCT_BODY()

FURuStoreProductSubscription()
{

introductoryPrice = "";
introductoryPriceAmount = "";

}

UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod subscriptionPeriod;

UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod freeTrialPeriod;

UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod gracePeriod;

UPROPERTY(BlueprintReadOnly)
FString introductoryPrice;

UPROPERTY(BlueprintReadOnly)
FString introductoryPriceAmount;

UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod introductoryPricePeriod;

};

● subscriptionPeriod — subscription period;
● freeTrialPeriod — subscription trial period;
● gracePeriod — subscription grace period;
● introductoryPrice — formatted introductory subscription price, including currency

sign, in product:language;
● introductoryPriceAmount — introductory price in minimum currency units (in

kopecks);
● introductoryPricePeriod — calculation period of the introductory price.

338

SubscriptionPeriod structure. Structure relates to subscription period terms

USTRUCT(BlueprintType)
struct FURuStoreSubscriptionPeriod
{

GENERATED_USTRUCT_BODY()

FURuStoreSubscriptionPeriod()
{

years = 1970;
months = 1;
days = 1;

}

UPROPERTY(BlueprintReadOnly)
int years;

UPROPERTY(BlueprintReadOnly)
int months;

UPROPERTY(BlueprintReadOnly)
int days;

};

● years — number of years;
● months — number of months;
● days — number of days.

339

Getting the List of Purchases

Use the GetPurchasesmethod to get the user's list of purchases

try {
const purchases = await RustoreBillingClient.getPurchases();
for (const purchase of purchases) {
console.log(purchase?.purchaseId);

}
} catch (err) {
console.log(`purchase err: ${err}`);

}

Blueprint implementation

340

This method returns:
GetProducts response

USTRUCT(BlueprintType)
struct FURuStorePurchasesResponse : public FURuStoreResponseWithCode
{

GENERATED_USTRUCT_BODY()

UPROPERTY(BlueprintReadOnly)
TArray<FURuStorePurchase> purchases;

};

● products — list of products.

Basic response class

341

USTRUCT(BlueprintType)
struct FURuStoreResponseWithCode
{

GENERATED_USTRUCT_BODY()

FURuStoreResponseWithCode()
{

code = 0;
errorMessage = "";
errorDescription = "";

}

UPROPERTY(BlueprintReadOnly)
int code;

UPROPERTY(BlueprintReadOnly)
FString errorMessage;

UPROPERTY(BlueprintReadOnly)
FString errorDescription;

UPROPERTY(BlueprintReadOnly)
TArray<FURuStoreDigitalShopGeneralError> errors;

};

● code — response code.
● errorMessage — error message.
● errorDescription — error description.
● errors — list of errors.

Error structure

342

USTRUCT(BlueprintType)

struct FURuStoreDigitalShopGeneralError

{

GENERATED_USTRUCT_BODY()

FURuStoreDigitalShopGeneralError()

{

name = "";

code = 0;

description = "";

}

UPROPERTY(BlueprintReadOnly)

FString name;

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString description;

};

● name — error name.
● code — error code.
● description — error description.

Product structure (with purchase info)

343

USTRUCT(BlueprintType)

struct FURuStorePurchase

{

GENERATED_USTRUCT_BODY()

FURuStorePurchase()

{

purchaseId = "";

productId = "";

invoiceId = "";

description = "";

language = "";

purchaseTime = FDateTime(0);

orderId = "";

amountLabel = "";

amount = 0;

currency = "";

quantity = 0;

purchaseState = EURuStorePurchaseState::CANCELLED;

developerPayload = "";

subscriptionToken = "";

}

UPROPERTY(BlueprintReadOnly)

FString purchaseId;

UPROPERTY(BlueprintReadOnly)

FString productId;

UPROPERTY(BlueprintReadOnly)

FString invoiceId;

UPROPERTY(BlueprintReadOnly)

FString description;

344

UPROPERTY(BlueprintReadOnly)

FString language;

UPROPERTY(BlueprintReadOnly)

FDateTime purchaseTime;

UPROPERTY(BlueprintReadOnly)

FString purchaseTimeLabel;

UPROPERTY(BlueprintReadOnly)

FString orderId;

UPROPERTY(BlueprintReadOnly)

FString amountLabel;

UPROPERTY(BlueprintReadOnly)

int amount;

UPROPERTY(BlueprintReadOnly)

FString currency;

UPROPERTY(BlueprintReadOnly)

int quantity;

UPROPERTY(BlueprintReadOnly)

EURuStorePurchaseState purchaseState;

UPROPERTY(BlueprintReadOnly)

FString developerPayload;

UPROPERTY(BlueprintReadOnly)

FString subscriptionToken;

};

345

● purchaseId — purchase ID;
● productId — product identifier;
● description — product description;
● invoiceId — invoice ID;
● language — language specified with the BCP 47 encoding;
● purchaseTime — purchase time (in RFC 3339 format);
● purchaseTimeLabel — purchase time (DD.MM.YYYY HH:MM:SS)
● orderId — unique payment identifier generated by the application (uuid);
● amountLable — formatted purchase price, including the currency symbol in

[language];
● amount — price in minor units of currency;
● currency — ISO 4217 currency code;
● quantity — number of products;
● purchaseState — purchase status:

○ possible values of the purchase condition:
■ CREATED — created;
■ INVOICE_CREATED — created, waiting for payment;
■ CONFIRMED — confirmed;
■ PAID — paid for;
■ CANCELLED — purchase canceled;
■ CONSUMED — purchase consumption is confirmed;
■ CLOSED — subscription is canceled.

● developerPayload — line specified by the developer that contains additional
information about the order;

● subscriptionToken — token for server purchase validation.

346

Getting Purchase Info

To get a specific purchase info, you must use the GetPurchaseInfo method:

long requestId =
URuStoreBillingClient::Instance()->GetPurchaseInfo(

purchaseId,
[](long requestId, TSharedPtr<FURuStorePurchaseInfoResponse,

ESPMode::ThreadSafe> response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● purchaseId — purchase ID.

Blueprint:

347

This method returns:
DeletePurchase response

USTRUCT(BlueprintType)
struct FURuStorePurchaseInfoResponse : public FUResponseWithCode
{

GENERATED_USTRUCT_BODY()

UPROPERTY(BlueprintReadOnly)
FURuStoreRequestMeta meta;

UPROPERTY(BlueprintReadOnly)
FURuStorePurchase purchase;

};

● meta — additional meta information about the purchase.
● purchase — purchase info.

Meta information structure:
DeletePurchase response

348

USTRUCT(BlueprintType)
struct FURuStoreRequestMeta
{

GENERATED_USTRUCT_BODY()

FURuStoreRequestMeta()
{

traceId = "";
}

UPROPERTY(BlueprintReadOnly)
FString traceId;

};

● traceId — additional meta information about the purchase.

Basic response class

USTRUCT(BlueprintType)
struct FURuStoreResponseWithCode
{

GENERATED_USTRUCT_BODY()

FURuStoreResponseWithCode()
{

code = 0;
errorMessage = "";
errorDescription = "";

}

UPROPERTY(BlueprintReadOnly)
int code;

UPROPERTY(BlueprintReadOnly)
FString errorMessage;

UPROPERTY(BlueprintReadOnly)
FString errorDescription;

UPROPERTY(BlueprintReadOnly)
TArray<FURuStoreDigitalShopGeneralError> errors;

};

● code — response code.
● errorMessage — error message.
● errorDescription — error description.
● errors — list of errors.

Error structure:

349

USTRUCT(BlueprintType)
struct FURuStoreDigitalShopGeneralError
{

GENERATED_USTRUCT_BODY()

FURuStoreDigitalShopGeneralError()
{

name = "";
code = 0;
description = "";

}

UPROPERTY(BlueprintReadOnly)
FString name;

UPROPERTY(BlueprintReadOnly)
int code;

UPROPERTY(BlueprintReadOnly)
FString description;

};

● name — error name.
● code — error code.
● description — error description.

How to handle purchases

Use the PurchaseProduct method to call a product purchase:

long requestId = URuStoreBillingClient::Instance()->PurchaseProduct(
productId,
orderId,
quantity,
developerPayload,
[](long requestId, TShardPtr<FURuStorePaymentResult,

ESPMode::ThreadSafe> response) {
// Process response

},

350

[](long requestId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

- string productId — product identifier.
- int quantity — number of products.
- string developerPayload — additional information from the AnyApp developer.

Blueprint implementation:

351

Purchase result classes:

Purchase result structure

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStorePaymentResultBase : public

UObject

{

GENERATED_BODY()

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

virtual ~FURuStorePaymentResult() {}

virtual FString GetTypeName() { return

"FURuStorePaymentResult"; }

};

Purchase result structure

352

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStoreInvoiceResult : public

URuStorePaymentResultBase

{

GENERATED_BODY()

public:

UPROPERTY(BlueprintReadOnly)

FURuStoreInvoiceResult value;

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStoreInvoiceResult : public

FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

public:

FURuStoreInvoiceResult()

{

invoiceId = "";

finishCode =

EURuStorePaymentFinishCode::RESULT_UNKNOWN;

}

virtual ~FURuStoreInvoiceResult() {}

UPROPERTY(BlueprintReadOnly)

FString invoiceId;

UPROPERTY(BlueprintReadOnly)

EURuStorePaymentFinishCode finishCode;

353

virtual FString GetTypeName() override { return

"FURuStoreInvoiceResult"; }

};

UENUM(BlueprintType)

enum class EURuStorePaymentFinishCode : uint8

{

SUCCESSFUL_PAYMENT UMETA(DisplayName =

"SUCCESSFUL_PAYMENT"),

CLOSED_BY_USER UMETA(DisplayName = "CLOSED_BY_USER"),

UNHANDLED_FORM_ERROR UMETA(DisplayName =

"UNHANDLED_FORM_ERROR"),

PAYMENT_TIMEOUT UMETA(DisplayName = "PAYMENT_TIMEOUT"),

DECLINED_BY_SERVER UMETA(DisplayName =

"DECLINED_BY_SERVER"),

RESULT_UNKNOWN UMETA(DisplayName = "RESULT_UNKNOWN")

};

Purchase result structure

354

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStoreInvalidInvoice : public

URuStorePaymentResultBase

{

GENERATED_BODY()

public:

UPROPERTY(BlueprintReadOnly)

FURuStoreInvalidInvoice value;

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStoreInvalidInvoice : public

FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

FURuStoreInvalidInvoice()

{

invoiceId = "";

}

virtual ~FURuStoreInvalidInvoice() {}

UPROPERTY(BlueprintReadOnly)

FString invoiceId;

virtual FString GetTypeName() override { return

"FURuStoreInvalidInvoice"; }

};

Purchase result structure

355

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStorePurchaseResult : public

URuStorePaymentResultBase

{

GENERATED_BODY()

public:

UPROPERTY(BlueprintReadOnly)

FURuStorePurchaseResult value;

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStorePurchaseResult : public

FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

FURuStorePurchaseResult()

{

finishCode =

EURuStorePaymentFinishCode::RESULT_UNKNOWN;

orderId = "";

purchaseId = "";

productId = "";

subscriptionToken = "";

}

virtual ~FURuStorePurchaseResult() {}

UPROPERTY(BlueprintReadOnly)

EURuStorePaymentFinishCode finishCode;

UPROPERTY(BlueprintReadOnly)

FString orderId;

356

UPROPERTY(BlueprintReadOnly)

FString purchaseId;

UPROPERTY(BlueprintReadOnly)

FString productId;

UPROPERTY(BlueprintReadOnly)

FString subscriptionToken;

virtual FString GetTypeName() override { return

"FURuStorePurchaseResult"; }

};

UENUM(BlueprintType)

enum class EURuStorePaymentFinishCode : uint8

{

SUCCESSFUL_PAYMENT UMETA(DisplayName =

"SUCCESSFUL_PAYMENT"),

CLOSED_BY_USER UMETA(DisplayName = "CLOSED_BY_USER"),

UNHANDLED_FORM_ERROR UMETA(DisplayName =

"UNHANDLED_FORM_ERROR"),

PAYMENT_TIMEOUT UMETA(DisplayName = "PAYMENT_TIMEOUT"),

DECLINED_BY_SERVER UMETA(DisplayName =

"DECLINED_BY_SERVER"),

RESULT_UNKNOWN UMETA(DisplayName = "RESULT_UNKNOWN")

};

Purchase result structure

357

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStoreInvalidPurchase : public

URuStorePaymentResultBase

{

GENERATED_BODY()

public:

UPROPERTY(BlueprintReadOnly)

FURuStoreInvalidPurchase value;

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStoreInvalidPurchase : public

FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

public:

FURuStoreInvalidPurchase()

{

purchaseId = "";

invoiceId = "";

orderId = "";

quantity = 0;

productId = "";

errorCode = 0;

}

virtual ~FURuStoreInvalidPurchase() {}

UPROPERTY(BlueprintReadOnly)

FString purchaseId;

UPROPERTY(BlueprintReadOnly)

358

FString invoiceId;

UPROPERTY(BlueprintReadOnly)

FString orderId;

UPROPERTY(BlueprintReadOnly)

int quantity;

UPROPERTY(BlueprintReadOnly)

FString productId;

UPROPERTY(BlueprintReadOnly)

int errorCode;

virtual FString GetTypeName() override { return

"FURuStoreInvalidPurchase"; }

};

Purchase structure

UCLASS(BlueprintType)

class RUSTOREBILLING_API URuStoreInvalidPaymentState : public

URuStorePaymentResultBase

{

GENERATED_BODY()

public:

UPROPERTY(BlueprintReadOnly)

FURuStoreInvalidPaymentState value;

};

USTRUCT(BlueprintType)

struct RUSTOREBILLING_API FURuStoreInvalidPaymentState : public

FURuStorePaymentResult

{

GENERATED_USTRUCT_BODY()

359

virtual ~FURuStoreInvalidPaymentState() {}

virtual FString GetTypeName() override { return

"FURuStoreInvalidPaymentState"; }

};

● URuStoreInvoiceResult — payments completed with results.
● URuStoreInvalidInvoice — payments completed without an invoice. It is probably

related to an incorrect invoice (an empty line, for example).
● URuStorePurchaseResult — purchase successfully completed.
● URuStoreInvalidPurchase — payment error.
● URuStoreInvalidPaymentState — PaymentState is missing when completing

payments.

EUPaymentFinishCode ststuses:
● SUCCESSFUL_PAYMENT — payment successfully completed.
● CLOSED_BY_USER — payment cancelled.
● UNHANDLED_FORM_ERROR — unknown error.
● PAYMENT_TIMEOUT — timeout errror.
● DECLINED_BY_SERVER — server rejected.
● RESULT_UNKNOWN — unknown payment status.

Purchase confirmation

The RuStore application consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation if they are in the
PurchaseState.PAID state.

You can use the ConfirmPurchase method to confirm the purchase:

360

Calling confirmation method

long requestId =

RuStoreBillingClient::Instance()->ConfirmPurchase(

purchaseId,

[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {

// Process error

},

[](long requestId,

TSharedPtr<FURuStoreConfirmPurchaseResponse,

ESPMode::ThreadSafe> response) {

// Process response

}

);

● purchaseId — purchase ID.
Blueprint implementation:

361

This method returns
ConfirmPurchase response

USTRUCT(BlueprintType)

struct FURuStoreConfirmPurchaseResponse : public

FURuStoreResponseWithCode

{

GENERATED_USTRUCT_BODY()

};

Basic response class

362

USTRUCT(BlueprintType)

struct FURuStoreResponseWithCode

{

GENERATED_USTRUCT_BODY()

FURuStoreResponseWithCode()

{

code = 0;

errorMessage = "";

errorDescription = "";

}

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString errorMessage;

UPROPERTY(BlueprintReadOnly)

FString errorDescription;

UPROPERTY(BlueprintReadOnly)

TArray<FURuStoreDigitalShopGeneralError> errors;

};

● code — response code.
● errorMessage — error message.
● errorDescription — error description.
● errors — list of errors.

Error structure

363

USTRUCT(BlueprintType)

struct FURuStoreDigitalShopGeneralError

{

GENERATED_USTRUCT_BODY()

FURuStoreDigitalShopGeneralError()

{

name = "";

code = 0;

description = "";

}

UPROPERTY(BlueprintReadOnly)

FString name;

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString description;

};

● name — error name.
● code — error code.
● description — error description.

Purchase cancellation

You can use the DeletePurchase method to cancel the purchase:

long requestId =

URuStoreBillingClient::Instance()->DeletePurchase(

purchaseId,

[](long requestId,

TSharedPtr<FURuStoreDeletePurchaseResponse,

ESPMode::ThreadSafe> response) {

// Process response

364

},

[](long requestId, TSharedPtr<FURuStoreRuStoreError,

ESPMode::ThreadSafe> error) {

// Process error

}

);

● purchaseId — purchase ID.

Blueprint implementation

365

This method returns:

DeletePurchase response

USTRUCT(BlueprintType)

struct FURuStoreDeletePurchaseResponse : public

FURuStoreResponseWithCode

{

GENERATED_USTRUCT_BODY()

};

Basic response class

366

USTRUCT(BlueprintType)

struct FURuStoreResponseWithCode

{

GENERATED_USTRUCT_BODY()

FURuStoreResponseWithCode()

{

code = 0;

errorMessage = "";

errorDescription = "";

}

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString errorMessage;

UPROPERTY(BlueprintReadOnly)

FString errorDescription;

UPROPERTY(BlueprintReadOnly)

TArray<FURuStoreDigitalShopGeneralError> errors;

};

● code — response code.
● errorMessage — error message.
● errorDescription — error description.
● errors — list of errors.

Error structure

367

USTRUCT(BlueprintType)

struct FURuStoreDigitalShopGeneralError

{

GENERATED_USTRUCT_BODY()

FURuStoreDigitalShopGeneralError()

{

name = "";

code = 0;

description = "";

}

UPROPERTY(BlueprintReadOnly)

FString name;

UPROPERTY(BlueprintReadOnly)

int code;

UPROPERTY(BlueprintReadOnly)

FString description;

};

● name — error name.
● code — error code.
● description — error description.

Consumption and cancellation scenario
Uncompleted payments must be processed by the AnyApp developer.

The purchase cancellation method should be used if:

1. The method of getting the list of products returned the purchase status as follows:
○ PurchaseState.CREATED;
○ PurchaseState.INVOICE_CREATED;

2. If purchaseProduct returned PaymentResult.InvalidPurchase.
3. If purchaseProduct returned PaymentResult.PurchaseResult that contains the

following PaymentFinishCode:
○ CLOSED_BY_USER — canceled by the user;

368

○ UNHANDLED_FORM_ERROR — unknown error;
○ PAYMENT_TIMEOUT — timeout payment error;
○ DECLINED_BY_SERVER — rejected by server;
○ RESULT_UNKNOWN — unknown payment status.

The confirmPurchase method should be used if:

1. The getPurchases method returned the purchase status as follows:
○ PurchaseState.PAID.

2. The purchaseProduct method returned PaymentResult.PurchaseResult that contains
the following PaymentFinishCode:

○ SUCCESSFUL_PAYMENT — successful payment.

Error handling

All possible errors are processed by onFailure handler of SDK methods.
Error structure

USTRUCT(BlueprintType)

struct RUSTORECORE_API FURuStoreRuStoreError

{

GENERATED_USTRUCT_BODY()

FURuStoreRuStoreError()

{

name = "";

description = "";

}

UPROPERTY(BlueprintReadOnly)

FString name;

UPROPERTY(BlueprintReadOnly)

FString description;

};

● name — error name.
● description — error description.

369

Possible errors:
● RuStoreNotInstalledException — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException — RuStore installed on a user's device doesn’t support push

notifications.
● RuStoreUserUnauthorizedException — the user is not logged in to the RuStore.
● RuStoreFeatureUnavailableException — RuStore app is not allowed to run in the

background.
● RuStoreException — RuStore basic error from which all the other errors are inherited.

When calling the PurchaseProduct method, errors are handled automatically.
If the allowNativeErrorHandling == true parameter was passed during SDK initialization, it is
passed to the resolveForBilling method apart from calling the corresponding onFailure
handler.

Error handling

public fun RuStoreException.resolveForBilling(context: Context)

You can change this behavior after initialization by setting the AllowNativeErrorHandling
property:
Restriction from native error handling

RuStoreBillingClient::Instance()->AllowNativeErrorHandling =

false;

370

371

React Native

General Information 1
Embed in your project 1
How to initialize the library 3
Payment functions availability 3

Getting the List of Products 4
Getting the List of Purchases 8

Getting Specific Purchase Info 9
How to handle purchases 10
Purchase confirmation 13
Purchase cancellation 14
Consumption and cancellation scenario 14

General Information

Example of implementation
Please have a thorough look at the application example to learn how to integrate payments
correctly.

Payment integration guideline
Comply with the terms below to ensure proper payment integration in your app:

1. The RuStore app must be installed on the user's device.
2. Your app user must be authorized on the RuStore.
3. The user and the application must not be blocked on the RuStore.
4. The RuStore Console shopping option must be enabled for the application.

The service has some restrictions to work outside of Russia.

Embed in your project

To connect SDK to your project, you need to run the following code:

// HTTPS
npm install
git+https://git@gitflic.ru:rustore/react-native-rustore-billing-s
dk.git

372

https://gitflic.ru/project/rustore/godot-rustore-billing/file?file=example&branch=master
https://console.rustore.ru/sign-in

// SSH
npm install
git+ssh://git@gitflic.ru:rustore/react-native-rustore-billing-sdk
.git

Handling deeplinks in your app

To redirect a user to your app after payment via third-party apps (the Faster Payments
System (SBP), SberPay and others), you need to properly implement deep linking in your
app. Specify the intent-filter with the scheme in AndroidManifest.xml:

<activity
android:name=".sample.MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE"

/>
<data android:scheme="yourappscheme" />

</intent-filter>

</activity>

where "yourappscheme" — your deeplink scheme, it can be changed to another one.

This scheme must match the deeplinkScheme parameter passed to init().

How to initialize the library

373

You must initialize the library to call its method. To do this, call the
RustoreBillingClient.initialize() method:

try {
RustoreBillingClient.initialize({
consoleApplicationId: 'appId',
deeplinkScheme: 'scheme',

});
console.log(`initialize success: ${result}`);

} catch (err) {
console.log(`initialize err: ${err}`);

}

● consoleApplicationId — application code from RuStore Console (example:
https://console.rustore.ru/apps/123456).

● deeplinkScheme — deeplink scheme required to return to your app page after
payment through a third-party application (for example, SberPay or SBP). The SDK
generates its own host for this scheme.

Make sure that the deeplink scheme passed to deeplinkScheme matches the scheme
specified in AndroidManifest.xml in the "Deeplink Processing" section.

Payment functions availability

To check whether your app supports payment functions, the following conditions should be
met:

1. The RuStore app must be installed on the user's device.
2. Your RuStore app should support the payment processing function.
3. Your app user must be authorized on the RuStore.
4. The user and the application must not be blocked on the RuStore.
5. The RuStore Console shopping option must be enabled for the application.

If all conditions are met, the RustoreBillingClient.checkPurchasesAvailability() method returns
true.

374

https://console.rustore.ru/apps/752063
https://console.rustore.ru/sign-in

try {
const isAvailable = await

RustoreBillingClient.checkPurchasesAvailability();
console.log(`available success ${isAvailable}`);

} catch (err) {
console.log(`available error ${err}`);

}

Getting the List of Products
Use the RustoreBillingClient.getProducts(productIds) method to get a list of products:

try {
const products = await

RustoreBillingClient.getProducts(productIds);
for (const product of products) {
console.log(product?.productId);

}
} catch (err) {
console.log(`products err: ${err}`);

}

● productIds — list of products IDs.

This method returns `Product[]`. Below is the product pattern:

interface Product {

375

productId: string;
productType?: ProductType;
productStatus: ProductStatus;
priceLabel?: string;
price?: number;
currency?: string;
language?: string;
title?: string;
description?: string;
imageUrl?: string;
promoImageUrl?: string;
subscription?: ProductSubscription;

}

● product_id — product ID;
● product_type — product type;
● product_status — product status;
● price_lable — formatted product price, including currency symbol in [language];
● price — price in minimum units (in kopecks);
● currency — currency code ISO 4217;
● language — language specified using BCP 47 encoding;
● title — product name in [language];
● description — product description in [language];
● image_url — image link
● promo_image_url — promotional image link;
● subscription — subscription description, returned only for subscription type products.

Subscription structure:

interface ProductSubscription {
subscriptionPeriod?: SubscriptionPeriod;
freeTrialPeriod?: SubscriptionPeriod;
gracePeriod?: SubscriptionPeriod;
introductoryPrice?: string;
introductoryPriceAmount?: string;
introductoryPricePeriod?: SubscriptionPeriod;

376

}

● subscriptionPeriod — subscription period;
● freeTrialPeriod — subscription trial period;
● gracePeriod — subscription grace period;
● introductoryPrice — formatted introductory subscription price, including currency

sign, in product:language;
● introductoryPriceAmount — introductory price in minimum currency units (in

kopecks);
● introductoryPricePeriod — calculation period of the introductory price.

SubscriptionPeriod structure:

interface SubscriptionPeriod {
years: number;
months: number;
days: number;

}

● years — number of years;
● months — number of months;
● days — number of days.

377

Getting the List of Purchases

Use the RustoreBillingClient.getPurchases() method to get the user's list of purchases

try {
const purchases = await RustoreBillingClient.getPurchases();
for (const purchase of purchases) {
console.log(purchase?.purchaseId);

}
} catch (err) {
console.log(`purchase err: ${err}`);

}

This method returns `Product[]`. Below is the product pattern:

interface Purchase {
purchaseId?: string;
productId: string;
productType?: ProductType;
invoiceId?: string;
description?: string;
language?: string;
purchaseTime?: string;
orderId?: string;
amountLabel?: string;
amount?: number;
currency?: string;
quantity?: number;
purchaseState?: PurchaseState;
developerPayload?: string;
subscriptionToken?: string;

}

378

● purchase_id — purchase ID;
● product_id — product ID;
● product_type — product type;
● invoice_id — account ID;
● description — purchase description;
● language — language specified using BCP 47 encoding;
● purchase_time — purchase time (in RFC 3339);
● order_id — unique payment ID generated by the application (uuid);
● amount_lable — formatted purchase price, including currency symbol in [language];
● amount — price in minimum currency units;
● currency — ISO 4217 currency code;
● quantity — quantity of product;
● purchase_state — purchase state;
● developer_payload — string specified by the developer containing additional

information about the order;
● subscription_token — token for server purchase validation. For more information

about validating a purchase on the server, see the “Server-based purchase
validation” section.

Possible purchase status values:

● CREATED — created;
● INVOICE_CREATED — created, awaiting payment;
● CONFIRMED — confirmed;
● PAID — paid;
● CANCELLED — purchase canceled;
● CONSUMED — purchase confirmed;
● CLOSED — subscription canceled.

Getting Specific Purchase Info

To get a specific purchase, you must use the
RustoreBillingClient.getPurchaseInfo(purchaseId) method:

379

try {
const purchase = await

RustoreBillingClient.getPurchaseInfo('purchaseId');
console.log(purchase?.purchaseId);

} catch (err) {
console.log(`purchase err: ${err}`);

}

● purchaseId — purchase ID.

This method returns Purchase, which is described above.

How to handle purchases

Use the RustoreBillingClient.purchaseProduct({...})` method to call a product purchase:

try {
const response = await RustoreBillingClient.purchaseProduct({
productId: 'productId',
orderId: 'orderId',
quantity: 0,
developerPayload: 'developerPayload'

});
console.log(`purchase success: ${response}`);

} catch (err) {
console.log(`purchase err: ${err}`);

}

● product_id — product ID;
● order_id — order ID, created on the AnyApp side (optional. If not specified, it is

generated automatically);
● invoice_id — account ID;
● product_id — product ID;
● quantity — number of products (optional);
● payload — additional information from the AnyApp developer (optional).
● error_code — error code in case of failed request.

380

The purchase result can be represented as one of the following interfaces:
SuccessPayment, CanceledPayment or FailurePayment:

enum PaymentResult {
SUCCESS = 'SUCCESS',
CANCELLED = 'CANCELLED',
FAILURE = 'FAILURE',

}

interface SuccessPaymentResult {
orderId?: string;
purchaseId: string;
productId: string;
invoiceId: string;
subscriptionToken?: string;

}

interface SuccessPayment {
type: PaymentResult.SUCCESS;
result: SuccessPaymentResult;

}

interface CancelledPaymentResult {
purchaseId: string;

}

interface CancelledPayment {
type: PaymentResult.CANCELLED;
result: CancelledPaymentResult;

}

interface FailurePaymentResult {
purchaseId?: string;
invoiceId?: string;
orderId?: string;
quantity?: number;
productId?: string;
errorCode?: number;

}

interface FailurePayment {
type: PaymentResult.FAILURE;
result: FailurePaymentResult;

}

381

● SuccessPayment — product successfully purchased.
● FailurePayment — purchase failed.
● CancelledPayment — purchase canceled.

382

Purchase confirmation

The RuStore application consists of the following types of products:

● CONSUMABLE — consumables (multiple-time purchases, such as crystals in the
app);

● NON_CONSUMABLE — non-consumables (one-time purchases, such as disabling
ads in an app);

● SUBSCRIPTION — subscription (can be purchased for a period of time, such as a
streaming service subscription).

Only CONSUMABLE type products require confirmation if they are in the
PurchaseState.PAID state.

You can use the RustoreBillingClient.confirmPurchase({...}) method to confirm the
purchase:

try {
const isConfirmed = await RustoreBillingClient.confirmPurchase({
purchaseId: 'purchaseId',
developerPayload: 'developerPayload'

})
console.log(`confirm success: ${isConfirmed}`);

} catch (err) {
console.log(`confirm err: ${err}`);

}

- purchaseId — purchase ID.
- developerPayload — developer-specified string containing additional

information.

Provided that all conditions are met, the RustoreBillingClient.confirmPurchase()
method returns true.

383

Purchase cancellation

You can use the RustoreBillingClient.deletePurchase(purchaseId) method to cancel the
purchase:

try {
const isDeleted = await

RustoreBillingClient.deletePurchase(purchaseId)
console.log(`delete success: ${isDeleted}`);

} catch (err) {
console.log(`delete err: ${err}`);

}

● purchaseId stands for the purchase ID.

Provided that all conditions are met, the RustoreBillingClient.deletePurchase()
method returns true.

Note. Use this method if your app logic is related to purchase cancellation. The purchase is
canceled automatically after a 20-min timeout, or upon a second purchase from the same
customer.

384

Consumption and cancellation scenario

Uncompleted payments must be processed by the AnyApp developer.

The purchase cancellation method (deletePurchase) should be used if:

1. The method of getting the list of products (getPurchases) returned the purchase
status as follows:

○ PurchaseState.CREATED;
○ PurchaseState.INVOICE_CREATED;

2. The purchase method (purchaseProduct) returned PaymentResult.Cancelled.

3. The purchase method (purchaseProduct) returned PaymentResult.Failure.

Use product consumption method (confirmPurchase) if the method the purchase obtaining
method (getPurchases) returns a CONSUMABLE product and with the status
PurchaseState.PAID.

385

Unreal
Unreal in-app payments plug-in (3.0)

General information

For in-app payments to work, the following requirements must be met:

1. RuStore is installed on the user's device.
2. The user is authorized in RuStore.
3. The user and the app are not banned in RuStore.
4. For the app, the purchase option is enabled in RuStore Console.
5. Unreal Engine 4.26 or later.

Connecting to project

1. Copy the contents of the “Plugins” folder from the official RuStore repository on gitflic to the
“Plugins” folder of your project. Restart Unreal Engine, then, in (Edit → Plugins → Project →
Mobile) check plug-ins “RuStoreBilling” and “RuStoreCore”.

2. In the “YourProject.Build.cs” file in the PublicDependencyModuleNames list connect modules
“RuStoreCore” and “RuStoreBilling”.

3. In the project settings (Edit → Project Settings → Android) set the Minimum SDK Version
parameter to 24 or later and the Target SDK Version parameter: 31 or later.

Processing deeplink

When paying via SberPay, the user is forwarded to the Sber payment app. On payment completion, the
user should be returned to the initial app via deeplink. To process deeplink, plug-in RuStore Billing
automatically adds the AndroidManifest.xml attribute android:exported="true" for the main activity and
the next intent-filter:

AndroidManifest.xml

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="yourappscheme" />

</intent-filter>

where “yourappscheme” — is the scheme of your deeplink, can be replaced by another one and must
match the deeplinkSheme value specified during the billing client library initialization.

You can replace “yourappscheme” with yours in the “RuStoreCore_UPL_Android.xml” file.

Initialization

Initialize the library before calling its methods. Initialization parameters are configured with the help of
the FURuStoreBillingClientConfig structure.

Initialization

386

https://console.rustore.ru/
https://console.rustore.ru/sign-in
https://gitflic.ru/project/rustore/rustore-unreal-engine-billing-example

FURuStoreBillingClientConfig config;
config.consoleApplicationId = "111111";
config.deeplinkScheme = "yourappscheme";
URuStoreBillingClient::Instance()->Init(config);
All operations with the client are also accessible from Blueprints. Initialization example:

● consoleApplicationId - app code from RuStore Console (example:
https://console.rustore.ru/apps/111111).

● deeplinkSheme - URL for using deeplink. You can use any unique name (example:
yourappscheme).

● allowNativeErrorHandling - allow native error handling (see “Error handling” for more details)
● enableLogs - enable event logging.

Important:

1. The deeplink scheme that is passed in deeplinkPrefix must match the scheme specified in
AndroidManifest.xml (see “Processing deeplink” for more details).

2. The Init() call ties the object to the root of the scene. If no further work with the object is needed,
execute the Dispose() method to free memory. The Dispose() method call will untie the object
from root and securely complete all sent requests.

Deinitialization
URuStoreBillingClient::Instance()->Dispose();

Blueprint implementation:

If you need to check whether the library is initialized, use the GetIsInitialized() method. The method will
return true if the library is initialized and false if Init hasn't been called yet.

Initialization check
bool isInitialized =
URuStoreBillingClient::Instance()->IsIninialized();

Blueprint implementation:

Payments availability check

To check whether payments are available, use the CheckPurchasesAvailability() method. On calling, the
following conditions are checked:

1. RuStore is installed on the user's device.
2. RuStore supports payments.
3. The user is authorized in RuStore.
4. The user and the app are not banned in RuStore.
5. In-app purchases for the app are enabled in RuStore Console.

Each CheckPurchasesAvailability() request returns a requestId that is unique per app launch. Each event
returns requestId of the request that triggered this event.

CheckPurchasesAvailability request

387

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing?utm_source=rustore_inner
https://console.rustore.ru/sign-in

long requestId =
URuStoreBillingClient::Instance()->CheckPurchasesAvailability(

[](long requestId,
TSharedPtr<FURuStoreFeatureAvailabilityResult, ESPMode::ThreadSafe>
response) {

// Process response
},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

The Success callback returns the FURuStoreFeatureAvailabilityResult structure in the Response
parameter:

CheckPurchasesAvailability response
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreFeatureAvailabilityResult
{

GENERATED_USTRUCT_BODY()
FURuStoreFeatureAvailabilityResult()
{

isAvailable = false;
}
UPROPERTY(BlueprintReadWrite)
bool isAvailable;

UPROPERTY(BlueprintReadWrite)
FURuStoreError cause;

};

isAvailable - whether payment conditions are met.

cause - error information.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)

388

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Working with products

Retrieving products list

To retrieve the products list, use the GetProducts() method.

GetProducts request
long requestId = URuStoreBillingClient::Instance()->GetProducts(

productIds,
[](long requestId, TSharedPtr<FURuStoreProductsResponse,

ESPMode::ThreadSafe> response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● TArray<FString> productIds - list of product identifiers.

Blueprint implementation:

The Success callback returns the FURuStoreProductsResponse structure in the Response parameter:

GetProducts response
USTRUCT(BlueprintType)
struct FURuStoreProductsResponse
{

GENERATED_USTRUCT_BODY()
UPROPERTY(BlueprintReadOnly)
TArray<FURuStoreProduct> products;

};

● products - products list.

Product structure
USTRUCT(BlueprintType)
struct FURuStoreProduct
{

GENERATED_USTRUCT_BODY()
FURuStoreProduct()
{

389

productId = "";
productType = EURuStoreProductType::NON_CONSUMABLE;
productStatus = EURuStoreProductStatus::INACTIVE;
priceLabel = "";
price = 0;
currency = "";
language = "";
title = "";
description = "";
imageUrl = "";
promoImageUrl = "";

}
UPROPERTY(BlueprintReadOnly)
FString productId;
UPROPERTY(BlueprintReadOnly)
EURuStoreProductType productType;
UPROPERTY(BlueprintReadOnly)
EURuStoreProductStatus productStatus;
UPROPERTY(BlueprintReadOnly)
FString priceLabel;
UPROPERTY(BlueprintReadOnly)
int price;
UPROPERTY(BlueprintReadOnly)
FString currency;
UPROPERTY(BlueprintReadOnly)
FString language;
UPROPERTY(BlueprintReadOnly)
FString title;
UPROPERTY(BlueprintReadOnly)
FString description;
UPROPERTY(BlueprintReadOnly)
FString imageUrl;
UPROPERTY(BlueprintReadOnly)
FString promoImageUrl;
UPROPERTY(BlueprintReadOnly)
FURuStoreProductSubscription subscription;

};

● productId - product identifier.
● productType - product type.
● productStatus - product status.
● priceLable - formatted product price, including currency symbol in language

FURuStoreProduct::language.
● price - price in minor currency units.
● currency - ISO 4217 currency code.
● language - language specified by BCP 47 encoding.
● title - product name in language FURuStoreProduct::language.
● description - product description in language FURuStoreProduct::language.

390

● imageUrl - image URL.
● promoImageUrl - promo image URL.
● subscription - subscription description, returns only for products with type subscription.

Product type
UENUM(BlueprintType)
enum class EURuStoreProductType : uint8
{

NON_CONSUMABLE UMETA(DisplayName = "NON_CONSUMABLE"),
CONSUMABLE UMETA(DisplayName = "CONSUMABLE"),
SUBSCRIPTION UMETA(DisplayName = "SUBSCRIPTION")

};

Product status
UENUM(BlueprintType)
enum class EURuStoreProductStatus : uint8
{

ACTIVE UMETA(DisplayName = "ACTIVE"),
INACTIVE UMETA(DisplayName = "INACTIVE")

};

Subscription structure
USTRUCT(BlueprintType)
struct FURuStoreProductSubscription
{

GENERATED_USTRUCT_BODY()
FURuStoreProductSubscription()
{

introductoryPrice = "";
introductoryPriceAmount = "";

}
UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod subscriptionPeriod;
UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod freeTrialPeriod;
UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod gracePeriod;
UPROPERTY(BlueprintReadOnly)
FString introductoryPrice;
UPROPERTY(BlueprintReadOnly)
FString introductoryPriceAmount;
UPROPERTY(BlueprintReadOnly)
FURuStoreSubscriptionPeriod introductoryPricePeriod;

};

● subscriptionPeriod - subscription period.
● freeTrialPeriod - free trial period.
● gracePeriod - grace period.
● introductoryPrice - formatted introductory subscription price including currency symbol, in

language FURuStoreProduct::language.

391

● introductoryPriceAmount - initial price in minor currency units.
● introductoryPricePeriod - introductory price period.

Subscription period structure
USTRUCT(BlueprintType)
struct FURuStoreSubscriptionPeriod
{

GENERATED_USTRUCT_BODY()
FURuStoreSubscriptionPeriod()
{

years = 1970;
months = 1;
days = 1;

}
UPROPERTY(BlueprintReadOnly)
int years;
UPROPERTY(BlueprintReadOnly)
int months;
UPROPERTY(BlueprintReadOnly)
int days;

};

● years - number of years.
● months - number of years.
● days - number of days.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Working with purchases

392

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

Retrieving purchases list

To retrieve the purchases list, use the GetPurchases() method.

Retrieving the user's purchases list
long requestId = URuStoreBillingClient::Instance()->GetPurchases(

[](long requestId, TSharedPtr<FURuStorePurchasesResponse,
ESPMode::ThreadSafe> response) {

// Process response
},
[](long requestId, TSharedPtr<FURuStoreRuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

The Success callback returns the FURuStorePurchasesResponse structure in the Response parameter:

GetPurchases response
USTRUCT(BlueprintType)
struct FURuStorePurchasesResponse
{

GENERATED_USTRUCT_BODY()
UPROPERTY(BlueprintReadOnly)
TArray<FURuStorePurchase> purchases;

};

● purchases - list of purchases.

Purchases information structure
USTRUCT(BlueprintType)
struct FURuStorePurchase
{

GENERATED_USTRUCT_BODY()
FURuStorePurchase()
{

purchaseId = "";
productId = "";
invoiceId = "";
description = "";
language = "";
purchaseTime = FDateTime(0);
orderId = "";
amountLabel = "";
amount = 0;
currency = "";
quantity = 0;
purchaseState = EURuStorePurchaseState::CANCELLED;
developerPayload = "";

393

subscriptionToken = "";
}
UPROPERTY(BlueprintReadOnly)
FString purchaseId;
UPROPERTY(BlueprintReadOnly)
FString productId;
UPROPERTY(BlueprintReadOnly)
FString invoiceId;
UPROPERTY(BlueprintReadOnly)
FString description;
UPROPERTY(BlueprintReadOnly)
FString language;
UPROPERTY(BlueprintReadOnly)
FDateTime purchaseTime;
UPROPERTY(BlueprintReadOnly)
FString purchaseTimeLabel;
UPROPERTY(BlueprintReadOnly)
FString orderId;
UPROPERTY(BlueprintReadOnly)
FString amountLabel;
UPROPERTY(BlueprintReadOnly)
int amount;
UPROPERTY(BlueprintReadOnly)
FString currency;
UPROPERTY(BlueprintReadOnly)
int quantity;
UPROPERTY(BlueprintReadOnly)
EURuStorePurchaseState purchaseState;
UPROPERTY(BlueprintReadOnly)
FString developerPayload;
UPROPERTY(BlueprintReadOnly)
FString subscriptionToken;

};

● purchaseId - purchase identifier.
● productId - product identifier.
● description - purchase description.
● invoiceId - invoice identifier.
● language - language specified by BCP 47 encoding.
● purchaseTime - purchase time
● purchaseTimeLabel - purchase time in the DD.MM.YYYY HH:MM:SS format
● orderId - payment identifier generated by the app (uuid).
● amountLable - formatted purchase price, including currency symbol, in language

FURuStorePurchase::language.
● amount - price in minor currency units.
● currency - ISO 4217 currency code.
● quantity - quantity of the product.
● purchaseState - purchase state.

394

● developerPayload - a text string specified by the developer that contains additional information
about the order.

● subscriptionToken - token for the server validation of the purchase.

Purchase state
UENUM(BlueprintType)
enum class EURuStorePurchaseState : uint8
{

CREATED UMETA(DisplayName = "CREATED"),
INVOICE_CREATED UMETA(DisplayName = "INVOICE_CREATED"),
CONFIRMED UMETA(DisplayName = "CONFIRMED"),
PAID UMETA(DisplayName = "PAID UMETA"),
CANCELLED UMETA(DisplayName = "CANCELLED"),
CONSUMED UMETA(DisplayName = "CONSUMED"),
CLOSED UMETA(DisplayName = "CLOSED")

};

● CREATED - purchase created.
● INVOICE_CREATED - purchase created, awaiting payment.
● CONFIRMED - purchase confirmed.
● PAID - purchase paid.
● CANCELLED - purchase canceled.
● CONSUMED - purchase consumed.
● CLOSED - subscription closed.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Product purchase

395

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

To make a product purchase, use the PurchaseProduct() method.

Purchase product request
long requestId = URuStoreBillingClient::Instance()->PurchaseProduct(

productId,
orderId,
quantity,
developerPayload,
[](long requestId, TShardPtr<FURuStorePaymentResult,

ESPMode::ThreadSafe> response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● string productId - product identifier.
● int quantity - quantity of products.
● string developerPayload - additional information from the AnyApp developer.

Blueprint implementation:

The Success callback returns a managed UE pointer (doesn't require manual removal) for the
URuStorePaymentResultClass class in the Response parameter:

Purchase result structure
UCLASS(BlueprintType)
class RUSTOREBILLING_API URuStorePaymentResultClass : public UObject
{

GENERATED_BODY()
};
USTRUCT(BlueprintType)
struct RUSTOREBILLING_API FURuStorePaymentResult
{

GENERATED_USTRUCT_BODY()
virtual ~FURuStorePaymentResult() {}

virtual FString GetTypeName() { return "FURuStorePaymentResult";
}
};
Purchase result structure
UCLASS(BlueprintType)
class RUSTOREBILLING_API URuStoreSuccess : public
URuStorePaymentResultClass
{

GENERATED_BODY()
public:

UPROPERTY(BlueprintReadOnly)

396

FURuStoreSuccess value;
};
USTRUCT(BlueprintType)
struct RUSTOREBILLING_API FURuStoreSuccess : public
FURuStorePaymentResult
{

GENERATED_USTRUCT_BODY()
FURuStoreSuccess()
{

orderId = "";
purchaseId = "";
productId = "";
invoiceId = "";
subscriptionToken = "";

}
UPROPERTY(BlueprintReadOnly)
FString orderId;
UPROPERTY(BlueprintReadOnly)
FString purchaseId;
UPROPERTY(BlueprintReadOnly)
FString productId;
UPROPERTY(BlueprintReadOnly)
FString invoiceId;
UPROPERTY(BlueprintReadOnly)
FString subscriptionToken;
virtual FString GetTypeName() override { return

"FURuStoreSuccess"; }
};
Purchase result structure
UCLASS(BlueprintType)
class RUSTOREBILLING_API URuStoreCancelled : public
URuStorePaymentResultClass
{

GENERATED_BODY()
public:

UPROPERTY(BlueprintReadOnly)
FURuStoreCancelled value;

};
USTRUCT(BlueprintType)
struct RUSTOREBILLING_API FURuStoreCancelled : public
FURuStorePaymentResult
{

GENERATED_USTRUCT_BODY()
FURuStoreCancelled()
{

purchaseId = "";
}
UPROPERTY(BlueprintReadOnly)

397

FString purchaseId;
virtual FString GetTypeName() override { return

"FURuStoreCancelled"; }
};
Purchase result structure
UCLASS(BlueprintType)
class RUSTOREBILLING_API URuStoreFailure : public
URuStorePaymentResultClass
{

GENERATED_BODY()
public:

UPROPERTY(BlueprintReadOnly)
FURuStoreFailure value;

};
USTRUCT(BlueprintType)
struct RUSTOREBILLING_API FURuStoreFailure : public
FURuStorePaymentResult
{

GENERATED_USTRUCT_BODY()
public:

FURuStoreFailure()
{

purchaseId = "";
invoiceId = "";
orderId = "";
quantity = 0;
productId = "";
errorCode = 0;

}
UPROPERTY(BlueprintReadOnly)
FString purchaseId;
UPROPERTY(BlueprintReadOnly)
FString invoiceId;
UPROPERTY(BlueprintReadOnly)
FString orderId;
UPROPERTY(BlueprintReadOnly)
int quantity;
UPROPERTY(BlueprintReadOnly)
FString productId;
UPROPERTY(BlueprintReadOnly)
int errorCode;
virtual FString GetTypeName() override { return

"FURuStoreFailure"; }
};
Purchase result structure
UCLASS(BlueprintType)
class RUSTOREBILLING_API URuStoreInvalidPaymentState : public
URuStorePaymentResultBase

398

{
GENERATED_BODY()

public:
UPROPERTY(BlueprintReadOnly)
FURuStoreInvalidPaymentState value;

};
USTRUCT(BlueprintType)
struct RUSTOREBILLING_API FURuStoreInvalidPaymentState : public
FURuStorePaymentResult
{

GENERATED_USTRUCT_BODY()

virtual FString GetTypeName() override { return
"FURuStoreInvalidPaymentState"; }
};

● Success - result of a successful purchase completion.
● Failure - digital product purchase failure result.
● Cancelled - digital product purchase cancellation result.
● InvalidPaymentState - SDK payments error. May occur if the deeplink is processed incorrectly.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Purchase consumption (approval)

RuStore deals with the following types of products:

● CONSUMABLE - consumable products (can be purchased numerous times, for example: crystals
in the app).

399

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

● NON_CONSUMABLE - non-consumable products (can be purchased only once, for example:
disabling ads in the app).

● SUBSCRIPTION - product subscription (can be purchased for a period of time, for example: a
streaming service subscription).

Only CONSUMABLE products need consumption (approval)—if they are in the PurchaseState.PAID
state.

To consume (approve) a purchase, use the ConfirmPurchase method:

ConfirmPurchas request
long requestId = RuStoreBillingClient::Instance()->ConfirmPurchase(

purchaseId,
[](long requestId) {
// Process error
},

[](long requestId, TSharedPtr<FURuStoreConfirmPurchaseResponse,
ESPMode::ThreadSafe> response) {

// Process response
}

);

● purchaseId - purchase identifier.

Blueprint implementation:

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Purchase cancellation

400

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

To cancel a purchase, use the DeletePurchase method:

Purchase cancellation request
long requestId = URuStoreBillingClient::Instance()->DeletePurchase(

purchaseId,
[](long requestId) {
// Process response
},
[](long requestId, TSharedPtr<FURuStoreRuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● purchaseId - purchase identifier.

Important

Use this method only if your business logic implies manual purchase cancellation.

An unpaid purchase is canceled automatically after 20 minute timeout or on a subsequent purchase of the
same customer.

Blueprint implementation:

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Purchase information

To retrieve purchase information, use the GetPurchaseInfo method:

Purchase cancellation request
long requestId = URuStoreBillingClient::Instance()->GetPurchaseInfo(

401

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

purchaseId,
[](long requestId, TSharedPtr<FURuStorePurchase,

ESPMode::ThreadSafe> response) {
// Process response
},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

● purchaseId - purchase identifier.

Blueprint implementation:

The Success callback returns the FURuStorePurchase structure in the Response parameter:

Purchases information structure
USTRUCT(BlueprintType)
struct FURuStorePurchase
{

GENERATED_USTRUCT_BODY()
FURuStorePurchase()
{

purchaseId = "";
productId = "";
invoiceId = "";
description = "";
language = "";
purchaseTime = FDateTime(0);
orderId = "";
amountLabel = "";
amount = 0;
currency = "";
quantity = 0;
purchaseState = EURuStorePurchaseState::CANCELLED;
developerPayload = "";
subscriptionToken = "";

}
UPROPERTY(BlueprintReadOnly)
FString purchaseId;
UPROPERTY(BlueprintReadOnly)
FString productId;
UPROPERTY(BlueprintReadOnly)
FString invoiceId;
UPROPERTY(BlueprintReadOnly)
FString description;
UPROPERTY(BlueprintReadOnly)

402

FString language;
UPROPERTY(BlueprintReadOnly)
FDateTime purchaseTime;
UPROPERTY(BlueprintReadOnly)
FString purchaseTimeLabel;
UPROPERTY(BlueprintReadOnly)
FString orderId;
UPROPERTY(BlueprintReadOnly)
FString amountLabel;
UPROPERTY(BlueprintReadOnly)
int amount;
UPROPERTY(BlueprintReadOnly)
FString currency;
UPROPERTY(BlueprintReadOnly)
int quantity;
UPROPERTY(BlueprintReadOnly)
EURuStorePurchaseState purchaseState;
UPROPERTY(BlueprintReadOnly)
FString developerPayload;
UPROPERTY(BlueprintReadOnly)
FString subscriptionToken;

};

The Failure callback returns the FURuStoreError structure with the error information. All possible
FURuStoreException errors are described in the “Error handling”.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Error handling

Errors that occur are passed to the onFailure handler of the SDK methods.

Error structure
USTRUCT(BlueprintType)

403

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

struct RUSTORECORE_API FURuStoreRuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreRuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - name of the error.
● description - error description.

Possible errors:

● RuStoreNotInstalledException - RuStore is not installed on the user's device.
● RuStoreOutdatedException - the RuStore app installed on the user's devices doesn't support

payments.
● RuStoreUserUnauthorizedException - the user is not authorized in RuStore.
● RuStoreApplicationBannedException - the app is banned in RuStore.
● RuStoreUserBannedException - the user is banned in RuStore.
● RuStoreException - base RuStore error from which all other errors are inherited.

On PurchaseProduct call, errors are handled automatically.

If allowNativeErrorHandling == true was passed during the SDK initialization and an error occurs, aside
from calling the onFailure handler, this error is passed to the resolveForBilling method of the native SDK
to show the error dialog to the user:

Error handling
public fun RuStoreException.resolveForBilling(context: Context)

You can change this behavior after the initialization by setting AllowNativeErrorHandling property:

Deny native error handling
RuStoreBillingClient::Instance()->SetAllowNativeErrorHandling(false);

Theme change

To dynamically change theme, use the SetTheme method:

SetTheme request
EURuStoreTheme theme = EURuStoreTheme::DARK;
URuStoreBillingClient::Instance()->SetTheme(theme);

● theme - theme type from the EURuStoreTheme enumeration.

Blueprint implementation:

404

To retrieve the information about the set theme, use the GetTheme method:

SetTheme request
EURuStoreTheme theme = URuStoreBillingClient::Instance()->GetTheme();

Blueprint implementation:

Theme type
UENUM(BlueprintType)
enum class EURuStoreTheme : uint8
{

DARK UMETA(DisplayName = "DARK"),
LIGHT UMETA(DisplayName = "LIGHT")

};

Purchase confirmation and cancellation scenario

Due to the change of the product purchase model result, the business logic of the purchase confirmation
and cancellation was also changed.

Use the DeletePurchase() method if:

1. The GetPurchases() method returned a purchase with the following status:
1. FURuStorePurchaseState::CREATED.
2. FURuStorePurchaseState::INVOICE_CREATED.

2. The PurchaseProduct() methods returned FURuStorePaymentResult::CANCELLED.
3. The PurchaseProduct() method returned FURuStorePaymentResult::FAILURE.

Use the ConfirmPurchase() method if the GetPurchases() mthod returned a CONSUMABLE purchase
with the FURuStorePurchaseState::PAID status.

Test data

Test payment cards.

Push notifications SDK
Learn how to enable push notifications in your app depending on your development
environment.

Kotlin
General 231
Checking ability to receive push notification 235
Methods for working with push token 236
Getting data from RuStore SDK 237
Notification structure 239
Event logging 241

405

https://securepayments.sberbank.ru/wiki/doku.php/test_cards

Error handling 243
RuStore SDK for revision history 244

406

General

Implementation example

See the example app to learn how to enable push notifications correctly.

Push notifications enabling conditions

For push notifications to be enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.
5. App signature must match the one added to the RuStore Console.

How to add a repository

Enable local repository:

repositories {
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

Dependency injection

To enable dependency, add the following code to your configuration file:

dependencies {
implementation("ru.rustore.sdk:pushclient:1.2.0")

}
Editing your app’s manifest

Declare service extending RuStoreMessagingService:

<service

407

https://gitflic.ru/project/rustore/rustore-sdk-push-example
https://artifactory-external.vkpartner.ru/artifactory/maven

android:name=".MyRuStoreMessagingService"
android:exported="true"
tools:ignore="ExportedService">
<intent-filter>

<action
android:name="ru.rustore.sdk.pushclient.MESSAGING_EVENT" />

</intent-filter>
</service>

You can add the following metadata if you wish to change icon or color of standard notification:

<meta-data
android:name="ru.rustore.sdk.pushclient.default_notification_icon"
android:resource="@drawable/ic_baseline_android_24" />

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_color"
android:resource="@color/your_favorite_color" />

You can add the following metadata to redefine notification channel:

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_channe
l_id"

android:value="@string/pushes_notification_channel_id" />

When adding your own push notification channel, you have to create the channel yourself.
Initialization

For initialization, you will need a project ID, which can be obtained in the RuStore Console. To
do this, on the application page, go to the "Push notifications" section and select "Projects".

408

https://console.rustore.ru/waiting

class App : Application() {

override fun onCreate() {
super.onCreate()
RuStorePushClient.init(

application = this,
projectId = "i5UTx96jw6c1C9LvdlE4cdNrWHMNyRBt",
logger = DefaultLogger()

)
}

}

Add to your project’s ‘Application’ the following code for initialization:

● application — instance of ‘Application’ class;
● projectId — your project’s identifier in VKPNS system;
● logger — logger, output to logcat is used by default.

409

Checking ability to receive push notification

For push notifications to be enabled, all the conditions must be met:
1. The RuStore app is installed on the user's device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

You can use RuStorePushClient.checkPushAvailability method to check fulfillment of these
conditions:

RuStorePushClient.checkPushAvailability()
.addOnCompleteListener(object :

OnCompleteListener<FeatureAvailabilityResult> {
override fun onSuccess(result: FeatureAvailabilityResult) {

when (result) {
FeatureAvailabilityResult.Available -> {

// Process push available
}

is FeatureAvailabilityResult.Unavailable -> {
result.cause.resolveForPush(requireContext())

}
}

}

override fun onFailure(throwable: Throwable) {
// Process error

}
})

● context — context in the app.

410

Methods for working with push token
Getting user’s push token

After initialization of the library, you can use RuStorePushClient.getToken() method to get the
user's current push token.

If the user has no push token, the method will create and return a new push token.

RuStorePushClient.getToken().addOnCompleteListener(object :
OnCompleteListener<String?> {

override fun onFailure(throwable: Throwable) {
// Process error

}

override fun onSuccess(result: String?) {
// Process success

}
})
Deleting user’s push token

You can use RuStorePushClient.deleteToken() method to delete the user's current push token.

RuStorePushClient.deleteToken().addOnCompleteListener(object :
OnCompleteListener<Unit> {

override fun onFailure(throwable: Throwable) {
// Process error

}

override fun onSuccess(result: Unit) {
// Process success

}
})

411

Methods for working with push topics
Getting user’s push topic

After initialization of the library, you can use
RuStorePushClient.subscribeToTopic("your_topic_name") method to get the user's current
push topics.

RuStorePushClient.subscribeToTopic("your_topic_name").addOnComplete
Listener(object : OnCompleteListener<Unit> {

override fun onFailure(throwable: Throwable) {
// Process subscribe error

}

override fun onSuccess(result: Unit) {
// Process subscribe success

}
})
Unsubscribing from user’s push topic

You can use RuStorePushClient.unsubscribeToTopic("your_topic_name") method to delete
the user's current push topic.

RuStorePushClient.unsubscribeFromTopic("your_topic_name").addOnComp
leteListener(object : OnCompleteListener<Unit> {

override fun onFailure(throwable: Throwable) {
// Process unsubscribe error

}

override fun onSuccess(result: Unit) {
// Process unsubscribe success

}
})

412

Getting data from RuStore SDK

To get data from RuStoreSDK, create your service which is inherited from
RuStoreMessagingService:

class MessagingService: RuStoreMessagingService() {

override fun onNewToken(token: String) {
}

override fun onMessageReceived(message: RemoteMessage) {
}

override fun onDeletedMessages() {
}

override fun onError(errors:
List<RuStorePushClientException>) {

}
}

Methods

1. onNewToken — will be called when a new push token is received. After this method is
called, your app will be responsible for delivering the new push token to its server.

2. onMessageReceived — will be called when a new push notification is received. If there
is data in ‘notification’ object, RuStoreSDK will display the notification itself. If you don’t
want RuStoreSDK to display notification itself, use ‘data’ object, and leave ‘notification’
object empty. However, onMessageReceived will be called in any case. Push
notification’s payload (Map<String, String>) may be obtained from message.data field.

3. onDeletedMessages — will be called if one or more push notifications have not been
delivered to device. This may happen, for example, due to expiry of notification’s lifetime
before it is delivered to device. When this method is called, synchronizing with your
server is recommended to avoid missing any data.

4. onError — will be called if an error occurs at time of initialization.

413

Possible errors

● UnauthorizedException — the user has not logged in to the RuStore.
● HostAppNotInstalledException — user’s device doesn’t have RuStore app installed.
● HostAppBackgroundWorkPermissionNotGranted — RuStore app is not allowed to run in

the background.

All the methods will be called in the background.

414

Notification structure

Full notification structure

public data class RemoteMessage(
val messageId: String?,
val priority: Int,
val ttl: Int,
val collapseKey: String?,
val data: Map<String, String>,
val rawData: ByteArray?,
val notification: Notification?

)

● messageId — unique ID of message. It is the identifier of each message;
● priority — returns priority value (not taken into account at the moment). Possible values:

- 0 — UNKNOWN:
- 1 - HIGH;
- 2 - NORMAL.

● ttl — returns Int type push notification’s lifetime in seconds;
● collapseKey — identifier of a group of notifications (not taken into account at the

moment);
● data — a dictionary to which additional data for notification can be sent;
● rawData — ‘data’ dictionary in the form of a binary array;
● notification — notification object.

Structure of Notification object

public data class Notification(
val title: String?,
val body: String?,
val channelId: String?,
val imageUrl: Uri?,
val color: String?,
val icon: String?,
val clickAction: String?

)

● title — notification’s title;
● body — notification’s body;
● channelId — option to create the channel to which notification will be sent (for Android

8.0 or later);

415

● imageUrl — a direct link to image for insertion to notification (maximum size 1 MB);
● color — notification’s color (Notification.color). Color needs to be sent in hex format, as a

line (Example: #A52A2A);
● icon — notification’s icon. Icon should be located in the app’s resources (res/drawable).

Parameter’s value is a line that matches the resource’s name:
○ small_icon.xml icon is located in res/drawable, which is accessible in code via

R.drawable.small_icon. For this icon to be displayed in notification, the server
should place ‘small_icon’ value to ‘icon’ parameter.

● clickAction — ‘intent action’ with which activity is opened when a notification is pressed
on.

Creating channel for sending notification

The following order of priority is used for the channel to which notification will be sent:
1. If there is ‘channelId’ field in push notification, then RuStoreSDK will send notification to

this channel. Note that your app is responsible for creating this channel in advance.
2. If there is no ‘channelId’ field in push notification, but your app has specified parameter

with channel in AndroidManifest.xml, then channel from AndroidManifest.xml will be
used. Your app is responsible for creating the channel.

3. If there is no ‘channelId’ field in push notification, and no default channel has been set in
your app’s AndroidManifest.xml, then RuStoreSDK will create channel itself and will
send notification to it. All further notifications with no channel specified will be sent to this
channel.

Opening Activity when notification is pressed on

By default, RuStoreSDK opens activity with ‘android.intent.action.MAIN’ action whenever a
notification is pressed on. If ‘clickAction’ field is present, RuStoreSDK will open activity which
falls under ‘Intent filter’ with specified ‘action’.

For activity to open in RuStoreSDK when a notification is pressed on (this also applies to default
activity), add <category android:name="android.intent.category.DEFAULT" /> line in the
corresponding activity’s <intent-filter> element in app’s manifest. Activity will not open in
RuStoreSDK without this line.

416

Event logging

If you wish to log events of push notification library, add ‘logger’ parameter to
RuStorePushClient.init call (this parameter is not required for initialization).

To do this, ‘Logger’ interface needs to be implemented:

interface Logger {

fun verbose(message: String, throwable: Throwable? = null)
fun debug(message: String, throwable: Throwable? = null)
fun info(message: String, throwable: Throwable? = null)
fun warn(message: String, throwable: Throwable? = null)
fun error(message: String, throwable: Throwable? = null)

fun createLogger(tag: String): Logger
}

If Logger has not been sent, then default implementation with AndroidLog will be used.

public class DefaultLogger(
private val tag: String? = null,

) : Logger {
override fun verbose(message: String, throwable: Throwable?) {

Log.v(tag, message, throwable)
}

override fun debug(message: String, throwable: Throwable?) {
Log.d(tag, message, throwable)

}

override fun info(message: String, throwable: Throwable?) {
Log.i(tag, message, throwable)

}

override fun warn(message: String, throwable: Throwable?) {
Log.w(tag, message, throwable)

}

override fun error(message: String, throwable: Throwable?) {
Log.e(tag, message, throwable)

}

override fun createLogger(tag: String): Logger {
val newTag = if (this.tag != null) {

417

"${this.tag}:$tag"
} else {

tag
}
return DefaultLogger(newTag)

}
}

418

Error handling

Possible errors:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support

push notifications.
● RuStoreUserUnauthorizedException() — the user is not logged in to the RuStore.
● RuStoreFeatureUnavailableException() — RuStore app is not allowed to run in the

background.
● RuStoreException(message: String) — RuStore basic error from which all the other

errors are inherited.

If you wish to use UI interface for error handling, then use resolveForPush() method:

fun RuStoreException.resolveForPush(context: Context)

E2E Testing of Push Notifications SDK

To have testing enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

Enable the test mode to start testing the SDK:

RuStorePushClient.init(

application = this,

projectId = "some_project_id",

testModeEnabled = true

)

In test mode, a test push token is generated and test push notifications will be delivered
using the following method only:

419

val testNotificationPayload = TestNotificationPayload(

title = "Test notification title",

body = "Test notification message",

imgUrl = "some_image_http_url",

data = mapOf("some_key" to "some_value")

)

RuStorePushClient.sendTestNotification(testNotificationPayload).a

ddOnCompleteListener(object : OnCompleteListener<Unit> {

override fun onFailure(throwable: Throwable) {

// Process send test push error

}

override fun onSuccess(result: Unit) {

// Process send test push success

}

})

420

RuStore SDK for revision history
SDK version 1.0.0

- Updated sdk libraries: core and analytics up to v.1.0.0
- Divided pushclient into several modules which should be connected transitively:

- ru.rustore.sdk:push-common
- ru.rustore.sdk:push-core
- ru.rustore.sdk:push-core-network

SDK version 0.7.0
- Fixed "checkPushAvailability" method bugs
- Marked "checkPushAvailability(context: Context)" as deprecated to remove it in the

future. Use "checkPushAvailability()" instead without arguments.
- Added analyticsCallback to "RuStorePushClient.init": AnalyticsCallback?. It is required to

operate with the future function Targeting mailing.
- Bugfix.

SDK version 0.6.0
- Bugfix.

SDK version 0.5.0
- Bugfix.

SDK version 0.4.0
- Updated push notifications methods. You no longer need to add the ProGuard -keep

public class com.vk.push.** extends android.os.Parcelable rule, it can be removed. All
the required parameters are now provided with the SDK;

- Modified obfuscation structure. Now obfuscated classes are kept amid the root Push
SDK package.

SDK version 0.3.0
- Bugfix;
- Added E2E Testing of Push Notifications SDK.

SDK version 0.2.0
- Bugfix;
- Added methods for working with push topics.

SDK version 0.1.9
- Internal SDK update.

SDK version 0.1.8
- Fixed await() method for Task API.

SDK version 0.1.7
● Internal SDK update.

SDK version 0.1.6
● Internal SDK update.

421

SDK version 0.1.5
● Internal SDK update.

SDK version 0.1.4
● Intent Redirection vulnerability fixed which prevented from publishing the app on Google

Play.

SDK version 0.1.3
● Internal SDK update.

SDK version 0.1.2
● Internal SDK update.

SDK version 0.1.1
● Internal SDK update.
● In case there is no push token, the "getToken" method will create and return a new push

token.
● The "deleteToken" method no longer creates a new push token after the current one is

removed.

SDK version 0.1.0
● The Suspend methods are replaced with task API as follows:

○ Push notification availability check— «checkPushAvailability».
○ Obtaining a push token — «getToken».
○ Removing a push token — «deleteToken».

● The “checkPushAvailability” method now returns a “FeatureAvailabilityResult” object.

SDK version 0.0.9
● Internal SDK update.

422

Unreal
Client SDK: push notifications manual (RuStoreSDK) (1.0)
General information

For push notifications to work, the following requirements must be met:

1. RuStore is installed on the user's device.
2. RuStore supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user is authorized in RuStore.
5. The app signature fingerprint must match the fingerprint specified in RuStore Console.
6. Unreal Engine 4.26 or later.

Connecting to project

1. Copy the contents of the “Plugins” folder from the official RuStore repository on gitflic to the
“Plugins” folder of your project. Restart Unreal Engine, in the plug-in list (Edit → Plugins →
Project → Mobile) select “RuStorePush” and “RuStoreCore”.

2. In the “YourProject.Build.cs” file of the PublicDependencyModuleNames list connect the
“RuStoreCore” and “RuStorePush” modules.

3. In the project settings (Edit → Project Settings → Android) set the Minimum SDK Version
parameter to 24 or later and the Target SDK Version parameter to 31 or later.

Editing app manifest

The “RuStorePush” plug-in will declare the RuStoreUnityMessagingService service:

AndroidManifest.xml
<service

android:name="ru.rustore.unitysdk.pushclient.RuStoreUnityMessagingSer
vice"

android:exported="true"
tools:ignore="ExportedService">
<intent-filter>

<action
android:name="ru.rustore.sdk.pushclient.MESSAGING_EVENT" />

</intent-filter>
</service>

You can add the following metadata if you want to change the default notification icon or color:

AndroidManifest.xml
<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_icon"
android:resource="@drawable/ic_baseline_android_24" />

<meta-data

423

https://console.rustore.ru/
https://gitflic.ru/project/rustore/rustore-unreal-engine-plugins?branch=release

android:name="ru.rustore.sdk.pushclient.default_notification_color"
android:resource="@color/your_favorite_color" />

You can add the following metadata:

AndroidManifest.xml
<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_channel_
id"

android:value="@string/pushes_notification_channel_id" />

To add a channel for push notifications, create this channel yourself.

Initialization

Before calling library methods, initialize the library:

Initialization
FURuStorePushClientConfig config;
config.allowNativeErrorHandling = true;
config.messagingServiceListener = pushMessagingServiceListener;
config.logListener = pushLogListener;
FURuStorePushClient::Instance()->Init(config);

All operations with the client are also accessible from Blueprints. Initialization example:

● allowNativeErrorHandling - allow native error handling (see “Error handling” for details)
● messagingServiceListener - class object that implements

IRuStoreMessagingServiceListenerInterface
● logListener - class object that implements IRuStoreLogListenerInterface
● projectId - your project identifier in RuStore Console.

The URuStoreMessagingServiceListener and URuStoreLogListenerclasses implement
IRuStoreMessagingServiceListenerInterface and IRuStoreLogListenerInterface interfaces respectively. It
allows you to handle interface events directly from blueprint.

Initialization of URuStoreMessagingServiceListener and URuStoreLogListener together with
URuStorePushClient:

IRuStoreMessagingServiceListenerInterface
class RUSTOREPUSH_API IRuStoreMessagingServiceListenerInterface
{

GENERATED_BODY()

public:
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Messaging Service Listener Interface")
void NewTokenResponse(int64 requestId, FString& token);
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Messaging Service Listener Interface")

424

void MessageReceivedResponse(int64 requestId,
FURuStoreRemoteMessage& message);

UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =
"RuStore Messaging Service Listener Interface")

void DeletedMessagesResponse(int64 requestId);
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Messaging Service Listener Interface")
void ErrorResponse(int64 requestId, TArray<FURuStoreError>&

errors);
};

● NewTokenResponseResponse - will be called on receiving the push token. After calling this
method your app is responsible for passing new push token to its server.

● MessageReceivedResponse - will be called on getting a new push notification.
● DeletedMessagesResponse - will be called if one or several push notifications are not delivered

to the device. It may happen, for example, if notification lifetime expires before the notification is
delivered. When calling this method, it is recommended to sync with your server to avoid missing
data.

● ErrorResponse - will be called in case of an error during the initialization.

Possible errors:

● UnauthorizedException - the user is not authorized in RuStore.
● HostAppNotInstalledException - RuStore is not installed on the user's device.
● HostAppBackgroundWorkPermissionNotGranted - RuStore doesn't have permissions to work in

the background.

Notification structure.

Full notification structure
USTRUCT(BlueprintType)
struct RUSTOREPUSH_API FURuStoreRemoteMessage
{

GENERATED_USTRUCT_BODY()
public:

UPROPERTY()
FString collapseKey;

UPROPERTY()
TMap<FString, FString> data;

UPROPERTY()
FString messageId;

UPROPERTY()
FURuStoreNotification notification;

UPROPERTY()
int priority;

425

char* rawData;

UPROPERTY()
int ttl;

};

● messageId - message identifier. Is added to each message.
● priority - (currently, ignored) returns priority value. For now, the following variants are

proposed:
● 0 - UNKNOWN.
● 1 - HIGH.
● 2 - NORMAL.

● ttl - time to live of a push notification with the Int type in seconds.
● collapseKey - (currently, ignored) notifications group identifier.
● data - dictionary to which additional notification data can be passed.
● rawData - byte array data dictionary.
● notification - notification object.

Notification object structure
USTRUCT(Blueprintable)
struct RUSTOREPUSH_API FURuStoreNotification
{

GENERATED_USTRUCT_BODY()
public:

FURuStoreNotification()
{

title = "0";
body = "0";
channelId = "0";
imageUrl = "0";
color = "0";
icon = "0";
clickAction = "0";

}
UPROPERTY()
FString title;
UPROPERTY()
FString body;
UPROPERTY()
FString channelId;
UPROPERTY()
FString imageUrl;
UPROPERTY()
FString color;
UPROPERTY()
FString icon;
UPROPERTY()

426

FString clickAction;
};

● title - notification title.
● body - notification body.
● channelId - allows you to set a channel to which a notification will be sent (relevant for Android

8.0 and later).
● imageUrl - direct URL of an image to be included in the notification (the image size must not

exceed 1 MB).
● color - notification color (Notification.color). The color needs to be passed as a HEX string.

Example: “#A52A2A”.
● icon - notification icon. The icon must be placed in the app resources (res/drawable). Parameter

value is a string that matches the resource name. Example: in res/drawable there is a
small_icon.xml icon that is available in the code via R.drawable.small_icon. To display this icon
in a notification the server must place the “small_icon” value in the “icon” parameter.

● clickAction - intent action that will open activity when a notification is clicked on.

IRuStoreLogListenerInterface
class RUSTOREPUSH_API IRuStoreLogListenerInterface
{

GENERATED_BODY()
public:

UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =
"RuStore Log Listener Interface")

void LogResponse(int64 requestId, FString& logString);
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Log Listener Interface")
void LogWarningResponse(int64 requestId, FString& logString);
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Log Listener Interface")
void LogErrorResponse(int64 requestId, FString& logString);
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore Log Listener Interface")
void LogExceptionResponse(int64 requestId, FURuStoreError&

error);
};

● LogResponse - is called whenever regular event log records are created.
● LogWarningResponse - is called whenever warnings are created in the event log.
● LogErrorResponse - is called whenever error messages are created in the event log.
● LogExceptionResponse - is called whenever exception records are created in the event log.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()

427

{
name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Calling Init() for URuStorePushClient, URuStoreMessagingServiceListener, URuStoreLogListener ties
objects to the scene root. If no further work with the objects is needed, run the Dispose() method to free
memory. The Dispose() method call untie the objects from root and securely complete all sent requests.

Deinitialization
URuStorePushClient::Instance()->Dispose();
URuStoreMessagingServiceListener::Instance()->Dispose();
URuStoreLogListener::Instance()->Dispose();

Push notification availability check

To check whether push notifications are available, use the CheckPushAvailability() method. On calling,
the following conditions are checked:

1. RuStore is installed on the user's device.
2. RuStore supports push notifications.
3. The user is authorized in RuStore.
4. The user and the app are not banned in RuStore.
5. The app signature fingerprint must match the fingerprint specified in RuStore Console.

Each CheckPushAvailability() request returns requestId that is unique per app launch. Each event returns
requestId of the request that triggered this event.

RuStorePushClient.CheckPushAvailability implementation example
long responseId =
URuStorePushClient::Instance()->CheckPushAvailability(

[](long responseId, TSharedPtr<FUFeatureAvailabilityResult,
ESPMode::ThreadSafe> response) {

// Process response
},
[](long responseId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

428

https://console.rustore.ru/

The Success callback returns the FURuStoreFeatureAvailabilityResult structure in the Response
parameter:

CheckPushAvailability response
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreFeatureAvailabilityResult
{

GENERATED_USTRUCT_BODY()
FURuStoreFeatureAvailabilityResult()
{

isAvailable = false;
}
UPROPERTY(BlueprintReadWrite)
bool isAvailable;

UPROPERTY(BlueprintReadWrite)
FURuStoreError cause;

};

isAvailable - whether payment conditions are met.

cause - error information.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Methods for working with push tokens

Retrieving the user's push token

After the library is initialized you can use URuStorePushClient::Instance()->GetToken() to retrieve the
user's push token. If the user doesn't have a push token, the method will create one and return it.

RuStorePushClient.GetToken implementation example

429

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

long responseId = URuStorePushClient::Instance()->GetToken(
[](long responseId, FString response) {

// Process response
},
[](long responseId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

The Success callback returns the token string in the Response parameter:

GetProducts response
pFString response

● response - current push token.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

User's push token deletion

After the library is initialized you can use RuStorePushClientt::Instance()->DeleteToken() to delete the
user's current push token.

RuStorePushClient.DeleteToken implementation example
long responseId = URuStorePushClient::Instance()->DeleteToken(

[](long responseId) {
// Process success

},

430

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

[](long responseId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

Blueprint implementation:

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Methods for working with push topics

Topic-based subscription for push notifications

After the library is initialized you can use URuStorePushClientt::Instance()->SubscribeToTopic() to
subscribe to a topic.

RuStorePushClient.GetToken implementation example
long requestId = URuStorePushClient::Instance()->SubscribeToTopic(

topicName,
[](long requestId) {
// Process error
},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error
}

);

Blueprint implementation:

431

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Unsubscribing from topic-based push notifications

After the library is initialized you can use RuStorePushClientt::Instance()->UnsubscribeToTopic() to
unsubscribe from a topic.

RuStorePushClient.DeleteToken implementation example
long responseId =
URuStorePushClient::Instance()->UnsubscribeFromTopic(

[](long responseId) {
// Process success

},
[](long responseId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

432

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - error name.
● description - error description.

Creation of a notification channel

For a channel to which a notification will be sent, the following priority order is used:

1. If a push notification contains thechannelId field, the SDK will send the notification to this channel.
Note, that your application is responsible for creating this channel in advance.

2. If the channelId field in absent in a push notification, but your app specified a parameter with the
channel in AndroidManifest.xml, then, the channel from AndroidManifest.xml is be used. Your app is
responsible for channel creation.

3. If the channelId field is absent in a push notification and the default channel is not set in
AndroidManifest.xml of your application, then, SDK will create the channel and send the notification to
it. Further on, all notifications without set channel will be passed to this channel.

Opening Activity on notification tap

Be default, on notification tap the SDK opens an activity with the “android.intent.action.MAIN” action. If
the clickAction field is available, then, the SDK opens the activity that matches Intent filter with the
specified action.

For the SDK to open an activity on notification tap (this is also relevant to the default activity), in the app
manifest add <category android:name=“android.intent.category.DEFAULT” /> in the relevant
<intent-filter> element of the activity. Without this string the SDK will be unable to open an activity.

Error handling

Possible errors:

1. RuStoreNotInstalledException - RuStore is not installed on the user's device.
2. RuStoreOutdatedException - the RuStore app installed on the user's device doesn't support push

notifications.
3. RuStoreUserUnauthorizedException - the user is not authorized in RuStore.
4. RuStoreFeatureUnavailableException - RuStore isn't allowed to run in the background.
5. RuStoreException - base RuStore error from which all other errors are inherited.

If allowNativeErrorHandling == true was passed during the SDK initialization and an error occurs, aside
from calling the onFailure handler, this error is passed to the resolveForBilling method of the native SDK
to show the error dialog to the user:

resolveForPush
fun RuStoreException.resolveForPush(context: Context)

You can change this behavior after the initialization by setting AllowNativeErrorHandling property:

433

Deny native error handling
URuStorePushClient::Instance()->SetAllowNativeErrorHandling(false);

Unity

General

Implementation example

See the example app to learn how to enable push notifications correctly.

Push notifications enabling conditions

For push notifications to be enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.
5. App signature must match the one added to the RuStore Console.

Connecting to the project
To have the SDK enabled, you need to download the RuStore Push SDK and import it into
(Assets → Import Package → Custom Package). Dependencies are included automatically
using the External Dependency Manager (included in the SDK).

Minimum API level must be set to at least 24. Application minification (ProGuard/R8) is not
currently supported; it must be disabled in the project settings (File → Build Settings → Player
Settings → Publishing Settings → Minify).

Editing your app’s manifest

Declare service extending RuStoreMessagingService:

<service

android:name="ru.rustore.unitysdk.pushclient.RuStoreUnityMessagingS
ervice"

android:exported="true"
tools:ignore="ExportedService">
<intent-filter>

434

https://gitflic.ru/project/rustore/rustore-sdk-push-example

<action
android:name="ru.rustore.sdk.pushclient.MESSAGING_EVENT" />

</intent-filter>
</service>

You can add the following metadata if you wish to change icon or color of standard notification:

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_icon"
android:resource="@drawable/ic_baseline_android_24" />

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_color"
android:resource="@color/your_favorite_color" />

You can add the following metadata to redefine notification channel:

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_channe
l_id"

android:value="@string/pushes_notification_channel_id" />

When adding your own push notification channel, you have to create the channel yourself.
Initialization

For initialization, you will need a project ID, which can be obtained in the RuStore Console. To
do this, on the application page, go to the "Push notifications" section and select "Projects".

package ru.rustore.unitysdk;

import android.app.Application;
import ru.rustore.unitysdk.pushclient.RuStoreUnityPushClient;

435

https://console.rustore.ru/waiting

public class RuStoreUnityApplication extends Application {

@Override public void onCreate() {
super.onCreate();
RuStoreUnityPushClient.init(

application = this
);

}
}

● application — Application class instance.

Specify this class in AndroidManifest.xml:

<application
android:name="ru.rustore.unitysdk.RuStoreUnityApplication">

The library initialization parameters are configured in the Unity editor. Select Window →
RuStoreSDK → Settings → Push Client in the editor menu:

● VKPNS Project Id — project ID on the RuStore Console;
● Allow Native Error Handling — allow error handling in the native SDK.

You need to initialize the library before calling its methods from C# code:

var сonfig = new RuStorePushClientConfig() {
allowNativeErrorHandling = true,
messagingServiceListener = pushServiceListener,
logListener = pushLogListener

};

RuStorePushClient.Instance.Init(сonfig);

allowNativeErrorHandling — allow error handling in the native SDK;
messagingServiceListener — object of a class that implements the
IMessagingServiceListener interface;
logListener — object of a class that implements the ILogListener interface.

436

Checking ability to receive push notification

For push notifications to be enabled, all the conditions must be met:
1. The RuStore app is installed on the user's device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

You can use RuStorePushClient.checkPushAvailability method to check fulfillment of these
conditions:

RuStorePushClient.Instance.CheckPushAvailability(
onFailure: (error) => {

// Process error
},
onSuccess: (response) => {

if (!response.isAvailable) {
// Process push unavailable

}
});

437

Push Token Management Methods
Getting user’s push token

After initialization of the library, you can use RuStorePushClient.getToken() method to get the
user's current push token.

RuStorePushClient.Instance.GetToken(
onFailure: (error) => {

// Process error
},
onSuccess: (token) => {

// Process success
});

Deleting user’s push token

You can use RuStorePushClient.deleteToken() method to delete the user's current push token.

RuStorePushClient.Instance.DeleteToken(
onFailure: (error) => {

// Process error
},
onSuccess: () => {

// Process success
});

438

Push Topics Management Methods
Getting user’s push topic

After initialization of the library, you can use SubscribeToTopic("your_topic_name") method to
get the user's current push topics.

RuStorePushClient.Instance.SubscribeToTopic(
topicName: "your_topic_name",
onFailure: (error) => {

// Process error
},
onSuccess: () => {

// Process success
});

Unsubscribing from user’s push topic

You can use UnsubscribeFromTopic("your_topic_name") method to delete the user's current
push topic.

RuStorePushClient.Instance.UnsubscribeFromTopic(
topicName: "your_topic_name",
onFailure: (error) => {

// Process error
},
onSuccess: () => {

// Process success
});

439

RuStoreMessagingService

public interface IMessagingServiceListener {

public void OnNewToken(string token);
public void OnMessageReceived(RemoteMessage message);
public void OnDeletedMessages();
public void OnError(List<RuStoreError> errors);

}

onNewToken — will be called when a new push token is received. After this method is
called, your app will be responsible for delivering the new push token to its server.
onMessageReceived — will be called when a new push notification is received. If there
is data in ‘notification’ object, RuStoreSDK will display the notification itself. If you don’t
want RuStoreSDK to display notification itself, use ‘data’ object, and leave ‘notification’
object empty. However, onMessageReceived will be called in any case. Push
notification’s payload (Map<String, String>) may be obtained from message.data field.
onDeletedMessages — will be called if one or more push notifications have not been
delivered to device. This may happen, for example, due to expiry of notification’s lifetime
before it is delivered to device. When this method is called, synchronizing with your
server is recommended to avoid missing any data.
onError — will be called if an error occurs at time of initialization.

440

Possible errors

● UnauthorizedException — the user has not logged in to the RuStore.
● HostAppNotInstalledException — user’s device doesn’t have RuStore app installed.
● HostAppBackgroundWorkPermissionNotGranted — RuStore app is not allowed to run in

the background.

All the methods will be called in the background.

441

Notification structure

Full notification structure

public class RemoteMessage {

public string collapseKey;
public Dictionary<string, string> data;
public string messageId;
public Notification notification;
public int priority;
public sbyte[] rawData;
public int ttl;

}

● messageId — unique ID of message. It is the identifier of each message;
● priority — returns priority value (not taken into account at the moment). Possible values:

- 0 — UNKNOWN:
- 1 - HIGH;
- 2 - NORMAL.

● ttl — returns Int type push notification’s lifetime in seconds;
● collapseKey — identifier of a group of notifications (not taken into account at the

moment);
● data — a dictionary to which additional data for notification can be sent;
● rawData — ‘data’ dictionary in the form of a binary array;
● notification — notification object.

Structure of Notification object

public class Notification {

public string title;
public string body;
public string channelId;
public string imageUrl;
public string color;
public string icon;
public string clickAction;

}

● title — notification’s title;

442

● body — notification’s body;
● channelId — option to create the channel to which notification will be sent (for Android

8.0 or later);
● imageUrl — a direct link to image for insertion to notification (maximum size 1 MB);
● color — notification’s color (Notification.color). Color needs to be sent in hex format, as a

line (Example: #A52A2A);
● icon — notification’s icon. Icon should be located in the app’s resources (res/drawable).

Parameter’s value is a line that matches the resource’s name:
○ small_icon.xml icon is located in res/drawable, which is accessible in code via

R.drawable.small_icon. For this icon to be displayed in notification, the server
should place ‘small_icon’ value to ‘icon’ parameter.

● clickAction — ‘intent action’ with which activity is opened when a notification is pressed on.

Creating channel for sending notification

The following order of priority is used for the channel to which notification will be sent:
1. If there is ‘channelId’ field in push notification, then RuStoreSDK will send

notification to this channel. Note that your app is responsible for creating this
channel in advance.

2. If there is no ‘channelId’ field in push notification, but your app has specified
parameter with channel in AndroidManifest.xml, then channel from
AndroidManifest.xml will be used. Your app is responsible for creating the
channel.

3. If there is no ‘channelId’ field in push notification, and no default channel has
been set in your app’s AndroidManifest.xml, then RuStoreSDK will create
channel itself and will send notification to it. All further notifications with no
channel specified will be sent to this channel.

Opening Activity when notification is pressed on

By default, RuStoreSDK opens activity with ‘android.intent.action.MAIN’ action whenever a
notification is pressed on. If ‘clickAction’ field is present, RuStoreSDK will open activity which
falls under ‘Intent filter’ with specified ‘action’.

For activity to open in RuStoreSDK when a notification is pressed on (this also applies to default
activity), add <category android:name="android.intent.category.DEFAULT" /> line in the
corresponding activity’s <intent-filter> element in app’s manifest. Activity will not open in
RuStoreSDK without this line.

443

Error handling

Possible errors:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support

push notifications.
● RuStoreUserUnauthorizedException() — the user is not logged in to the RuStore.
● RuStoreFeatureUnavailableException() — RuStore app is not allowed to run in the

background.
● RuStoreException(message: String) — RuStore basic error from which all the other

errors are inherited.
If the allowNativeErrorHandling == true parameter was passed during SDK initialization, when
an error occurs, it is passed to the resolveForPush method of the native SDK and calls the
corresponding onFailure handler,:

fun RuStoreException.resolveForPush(context: Context)

You can change this behavior after initialization by setting the AllowNativeErrorHandling
property:

RuStorePushClient.Instance.AllowNativeErrorHandling = false;

444

Flutter
General 241
Checking ability to receive push notification 243
How to work with push tokens and push notifications 244
Notification structure 246

445

General

Implementation example

See the example app to learn how to integrate package for push notifications handling correctly.

Push notifications enabling conditions

For push notifications to be enabled, the following conditions need to be met:
1. The RuStore app is installed on the user's device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

Enabling in project

To enable package in project, execute the following command:
flutter pub add flutter_rustore_push

This command will add a line to pubspec.yaml file.
dependencies:
flutter_rustore_push: ^1.0.0

Initialization

To initialize push notifications service, add a value to ‘values’ of your android project:

<resources>
<string name="flutter_rustore_push_project"

translatable="false">xxx</string>
</resources>

xxx — project’s identifier. The field’s name in the RuStore Console, in ‘Push notifications ->
Projects’ section, is ‘Project ID’.

To start push notification service, Application class inherited from FlutterRustoreApplication
needs to be added.

An example of how to do this in Kotlin:

package ru.rustore.flutter_rustore_push_example

import ru.rustore.flutter_rustore_push.FlutterRustoreApplication

open class Application: FlutterRustoreApplication() {
}

446

https://gitflic.ru/project/rustore/flutter-rustore-push/file?file=example
https://dev.rustore.ru/

Specify the following class in AndroidManifest.xml:

<application
android:label="flutter_rustore_push_example"
android:name=".Application"
android:icon="@mipmap/ic_launcher">
// ...

</application>

Configuring ProGuard

To configure ProGuard, add the following rule:

-keep public class com.vk.push.** extends android.os.Parcelable

Add the following code in android/app/build.gradle:

buildTypes {
release {

// ...

proguardFiles
getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'

}

// ...
}

447

Checking ability to receive push notification

For push notifications to be enabled, all the conditions must be met:
1. The RuStore app is installed on the user's device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

You can use RustorePushClient.available() method to check if these conditions are met:

RustorePushClient.available().then((value) {
print("available success: ${value}");

}, onError: (err) {
print("available error: ${err}");

});

448

How to work with push tokens and push notifications
Getting user’s push token

After initialization of the library, you can use RustorePushClient.getToken() method to get the
user's current push token.

If the user has no push token, the method will create and return a new push token.

RustorePushClient.getToken().then((value) {
print("get token success: ${value}");

}, onError: (err) {
print("get token error: ${err}");

})

Deleting user’s push token

You can use RustorePushClient.deleteToken() method to delete user’s current push token.

RustorePushClient.deleteToken().then(() {
print("delete success:");

}, onError: (err) {
print("delete error: ${err}");

})

Token change events

An old token can become invalid from time to time. Token can be issued anew. To see if a new
token has been issued, use RustorePushClient.onNewToken() callback.

RustorePushClient.onNewToken((value) {
print("on new token success: ${value}");

}, error: (err) {
print("on new token err: ${err}");

});

Working with push notification

To get information from a push notification, add RustorePushClient.onMessageReceived()
callback.
RustorePushClient.onMessageReceived((value) {

449

print("on message received success: id=${value.messageId},
data=${value.data}, notification.body:
${value.notification?.body}");
}, error: (err) {

print("on message received error: ${err}");
});

Deleting push notification

To delete push notification, add RustorePushClient.onDeletedMessages() callback.
RustorePushClient.onDeletedMessages(() {

print("deleted messages");
}, error: (err) {

print("on message received error: ${err}");
});
Error handling

Use RustorePushClient.onError() callback for error handling.

RustorePushClient.onError((err) {
print("on error: ${err}");

});

450

Notification structure
Notification structure

class Message {
String? messageId;
int priority;
int ttl;
String? collapseKey;
Map<String?, String?> data;
Notification? notification;

}

● messageId — unique ID of message. It is the identifier of each message;
● priority — returns priority value. The following options are currently available:

○ 0 — UNKNOWN.
○ 1 — HIGH.
○ 2 — NORMAL.

● ttl — returns Int type push notification’s lifetime in seconds;
● collapseKey — identifier of a group of notifications;
● data — a dictionary to which additional data for notification can be sent;
● notification — notification object.

Structure ‘Notification’

class Notification {
String? title;
String? body;
String? channelId;
String? imageUrl;
String? color;
String? icon;
String? clickAction;

}

● title — notification’s title;
● body — notification’s body;
● channelId — option to create the channel to which notification will be sent (for Android

8.0 or later);
● imageUrl — a direct link to image for insertion to notification (maximum size 1 MB);
● color — notification’s color (Notification.color). Color needs to be sent in hex format, as a

line (Example: #A52A2A);
● icon — notification’s icon. Icon should be located in the app’s resources (res/drawable).

Parameter’s value is a line that matches the resource’s name:

451

○ small_icon.xml icon is located in res/drawable, which is accessible in code via
R.drawable.small_icon. For this icon to be displayed in notification, the server
should place ‘small_icon’ value to ‘icon’ parameter.

● clickAction — ‘intent action’ with which activity is opened when a notification is pressed
on.

452

Sending push notifications

The API was developed to provide a drop-in replacement for the Firebase.

To send a push notification, use the POST method
https://vkpns.rustore.ru/v1/projects/$project_id/messages:send.

Fill in "Project ID" and "Service Token" to send a push notification. You can also get these
values on RuStore Console. To do this, go to the “Push Notifications” section and select
“Projects”.

The service token must be specified in the “Authorization: Bearer {service-token}” header.

453

Request

Parameter Type Description

validate_only bool
Validate request without sending push notifications

message object (message) Push notifications structure

message

Parameter Type Description

token string Push user token received in the app

data map Object which contains «key»: value

notification object (message.notification) Basic notification template to be used on all platforms

android object (message.android) Special Android parameters for messages

*in hms it is required.

message.notification

Parameter Type Description

title string Notification title

body string Notification body

image string Contains URL images that will be displayed in the notification

message.android

Parameter Type Description

ttl string (duration format) How long (in seconds) the message
should be stored.

Example: "3.5s"

notification object
(message.android.notification) Notification to Android devices

message.android.notification

Parameter Type Description

454

title string Notification title

body string Notification body

icon string Notification icon

color string Notification icon color in #rrgggb

image string Contains URL images that will be displayed in the notification

channel_id string Notification channel ID

click_action string Action related to the user’s access to the notification

* hms defaults to type 1 (intent).
At this point, message structure only supports the above fields.

Successful response

Parameter Type Description

- - In case of a successful response, a
message with the "OK" status is
returned.

Error response

Parameter Type Description

error object (error) Error

error

Parameter Type Description

code int Numerical error code (404, 400, 403, 401, ...)

status string Detailed error description

errors array
(string)

Error code per provider or validation error

HTTP status corresponds to the code field.

Possible errors when sending a message:

455

● INVALID_ARGUMENT—incorrect request parameters.
● INTERNAL—internal service error.
● TOO_MANY_REQUESTS— exceeded number of attempts to send a message.
● PERMISSION_DENIED—incorrect service key.
● NOT_FOUND — incorrect user's push token.

Message validation algorithm

1. If there is a non-empty payload message.data (at least one pair of the key-value inside),
then the message is valid. The sections message.notification and message.android may
be empty.

2. If there are no message.data fields, then there must be a notification. In this case, the
presence of either the field message.notification or message.android.notification is
checked. At least one of these fields should be present, but also they both may be
present (if both are present, then some fields will be rewritten).

Restrictions

1. If there is no ttl field or it is equal to 0, then the default value will be included equal to 4
weeks. If there is no message.android section, then it will be added with the ttl field.

2. The maximum message size is 4096 bytes.

Push notification examples

Successful request example

456

POST
https://vkpns.rustore.ru/v1/projects/myproject-b5ae1/messages:s
end HTTP/2
Content-Type: application/json
Authorization: Bearer $ss_token

{
"message":{

"token":"bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
"notification":{
"body":"This is a notification message!",
"title":"Message",
"image":"https://image-hosting.org/284239234.jpeg"

}
}

}

Response

HTTP/2 200

{}

457

https://image-hosting.org/284239234.jpeg

Invalid provider example

POST
https://vkpns.rustore.ru/v1/projects/U95076bdd5KDJ3LjYkNp91o05Y
6LkfQk/messages:send HTTP/2
Content-Type: application/json
Authorization: Bearer
Fw9FgDx9FQtya6k-7UkSOnzpHYhDq0SQY4-8QKJ6wKZI9OUPiCCYyNmS-CV2-ZQ
5

{
"message": {

"token": "bad-push-token",
"notification": {
"body": "This is a notification message!",
"title": "Message",
"image": "https://image-hosting.org/284239234.jpeg"

}
}

}

Response

HTTP/2 400

{
"error": {

"code": 400,
"message": "The registration token is not a valid FCM

registration token",
"status": "INVALID_ARGUMENT"

}
}

458

https://image-hosting.org/284239234.jpeg

Invalid message example

POST
https://vkpns.rustore.ru/v1/projects/U95076bdd5KDJ3LjYkNp91o05Y
6LkfQk/messages:send HTTP/2
Content-Type: application/json
Authorization: Bearer
Fw9FgDx9FQtya6k-7UkSOnzpHYhDq0SQY4-8QKJ6wKZI9OUPiCCYyNmS-CV2-ZQ
5

{
"message": {

"token": "eH4tgqKEfFKqH6cMJ2WLttVibgQO9hfn",
"notification": {
"body": "This is a notification message!",
"title": "Message",
"image": "https://image-hosting.org/284239234.jpeg"

}
}

}

Response

HTTP/2 404

{

"error": {

"code": 404,

459

https://image-hosting.org/284239234.jpeg

"message": "Requested entity was not found.",

"status": "NOT_FOUND"

}

}

Sending push notifications by topic

To work with topics you will need the following artifacts:

● project_id (project ID), ss_token (service token) — These values can be obtained in
the RuStore Console. To do this, go to the “Push Notifications” section, open the
“Projects” tab on the app page.

● push_token — Device Push token(s) for subscribing to / unsubscribing from mailing
list by topic.

● topic — Project Topic.

Sending Push Notification to topic

Header is required. Authorization: Authorization: Bearer $ss_token.

Request

Parameter Type Description

data map Object containing «key»: value

460

notification object
(message.notifi
cation)

Basic notification template to be used on all
platforms

android object
(message.andr
oid)

Android specific messaging options

Successful response

Parameter Type Description

message text Message about successful push sending

Error

Parameter Type Description

code int Error code

status text Status

message text Details

Subscribing to push notifications by topic

Header is required Authorization: Authorization: Bearer $ss_token.

Request

Parameter Type Description

461

push_token
s

array (string) Push tokens that need to be subscribed to a topic

Successful response

Parameter Type Description

message text Message about successful subscription or errors

errors object array
(error
response by
token)

Error by token

Error

Parameter Type Description

push_token text Push token

error object (error
response)

Error

Error response

Parameter Type Description

code int Error code

status text Status

message text Details

462

Unsubscribing from push notifications by topic

Header is required Authorization: Authorization: Bearer $ss_token.

Request

Parameter Type Description

push_tokens string array Push tokens that need to be unsubscribed from
topic

Successful response

Parameter Type Description

message text Message about successful subscription or errors

errors object array
(error
response by
token)

Error by token

Error by token

Parameter Type Description

push_token text Push token

error object (error
response)

Error

463

Error response

Parameter Type Description

code int Error code

status text Status

message text Details

464

Java

General

Implementation example

See the example app to learn how to enable push notifications correctly.

Push notifications enabling conditions

For push notifications to be enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.
5. App signature must match the one added to the RuStore Console.

How to add a repository

Enable local repository:

repositories {
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

Dependency injection

To enable dependency, add the following code to your configuration file:

dependencies {
implementation("ru.rustore.sdk:pushclient:2.0.0")

}
Editing your app’s manifest

Declare service extending RuStoreMessagingService:

<service
android:name=".MyRuStoreMessagingService"

465

https://gitflic.ru/project/rustore/rustore-sdk-push-example
https://artifactory-external.vkpartner.ru/artifactory/maven

android:exported="true"
tools:ignore="ExportedService">
<intent-filter>

<action
android:name="ru.rustore.sdk.pushclient.MESSAGING_EVENT" />

</intent-filter>
</service>

You can add the following metadata if you wish to change icon or color of standard notification:

<meta-data
android:name="ru.rustore.sdk.pushclient.default_notification_icon"
android:resource="@drawable/ic_baseline_android_24" />

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_color"
android:resource="@color/your_favorite_color" />

You can add the following metadata to redefine notification channel:

<meta-data

android:name="ru.rustore.sdk.pushclient.default_notification_channe
l_id"

android:value="@string/pushes_notification_channel_id" />

When adding your own push notification channel, you have to create the channel yourself.
Initialization

For initialization, you will need a project ID, which can be obtained in the RuStore Console. To
do this, on the application page, go to the "Push notifications" section and select "Projects".

466

https://console.rustore.ru/waiting

class App : Application() {

@Override
public void onCreate() {

super.onCreate()
RuStorePushClient.INSTANCE.init(

this,
"i5UTx96jw6c1C9LvdlE4cdNrWHMNyRBt",
DefaultLogger()

);
}

}

Add to your project’s ‘Application’ the following code for initialization:

● application — instance of ‘Application’ class;
● projectId — your project’s identifier in VKPNS system;
● logger — logger, output to logcat is used by default.

Methods for working with push topics
Getting user’s push topic

467

After initialization of the library, you can use
RuStorePushClient.subscribeToTopic("your_topic_name") method to get the user's current
push topics.

RuStorePushClient.INSTANCE.subscribeToTopic("your_topic_name").addO
nCompleteListener(new OnCompleteListener<Void>() {

@Override
public void onComplete(Task<Void> task) {

if (task.isSuccessful()) {
// Process subscribe success

} else {
Exception exception = task.getException();
// Process subscribe error

}
}

});
Unsubscribing from user’s push topic

You can use RuStorePushClient.unsubscribeToTopic("your_topic_name") method to delete
the user's current push topic.

RuStorePushClient.INSTANCE.unsubscribeFromTopic("your_topic_name").
addOnCompleteListener(new OnCompleteListener<Void>() {

@Override
public void onComplete(Task<Void> task) {

if (task.isSuccessful()) {
// Process unsubscribe success

} else {
Exception exception = task.getException();
// Process unsubscribe error

}
}

});

468

RuStoreMessagingService

public class MessagingService extends RuStoreMessagingService {

@Override
public void onNewToken(String token) {

}

@Override
public void onMessageReceived(RemoteMessage message) {

}

@Override
public void onDeletedMessages() {

}

@Override
public void onError(List<RuStorePushClientException> errors) {

}
}

onNewToken — will be called when a new push token is received. After this method is
called, your app will be responsible for delivering the new push token to its server.
onMessageReceived — will be called when a new push notification is received. If there
is data in ‘notification’ object, RuStoreSDK will display the notification itself. If you don’t
want RuStoreSDK to display notification itself, use ‘data’ object, and leave ‘notification’
object empty. However, onMessageReceived will be called in any case. Push
notification’s payload (Map<String, String>) may be obtained from message.data field.
onDeletedMessages — will be called if one or more push notifications have not been
delivered to device. This may happen, for example, due to expiry of notification’s lifetime
before it is delivered to device. When this method is called, synchronizing with your
server is recommended to avoid missing any data.
onError — will be called if an error occurs at time of initialization.

469

Possible errors

● UnauthorizedException — the user has not logged in to the RuStore.
● HostAppNotInstalledException — user’s device doesn’t have RuStore app installed.
● HostAppBackgroundWorkPermissionNotGranted — RuStore app is not allowed to run in

the background.

All the methods will be called in the background.

470

Notification structure

Full notification structure

public RemoteMessage(
String messageId,
int priority,
int ttl,
String collapseKey,
Map<String, String> data,
byte[] rawData,
Notification notification

) {
this.messageId = messageId;
this.priority = priority;
this.ttl = ttl;
this.collapseKey = collapseKey;
this.data = data;
this.rawData = rawData;

this.notification = notification;
}

● messageId — unique ID of message. It is the identifier of each message;
● priority — returns priority value (not taken into account at the moment). Possible values:

- 0 — UNKNOWN:
- 1 - HIGH;
- 2 - NORMAL.

● ttl — returns Int type push notification’s lifetime in seconds;
● collapseKey — identifier of a group of notifications (not taken into account at the

moment);
● data — a dictionary to which additional data for notification can be sent;
● rawData — ‘data’ dictionary in the form of a binary array;
● notification — notification object.

Structure of Notification object

public Notification(
String title,
String body,

471

String channelId,
Uri imageUrl,
String color,
String icon,
String clickAction

) {
this.title = title;
this.body = body;
this.channelId = channelId;
this.imageUrl = imageUrl;
this.color = color;
this.icon = icon;
this.clickAction = clickAction;

}

● title — notification’s title;
● body — notification’s body;
● channelId — option to create the channel to which notification will be sent (for Android

8.0 or later);
● imageUrl — a direct link to image for insertion to notification (maximum size 1 MB);
● color — notification’s color (Notification.color). Color needs to be sent in hex format, as a

line (Example: #A52A2A);
● icon — notification’s icon. Icon should be located in the app’s resources (res/drawable).

Parameter’s value is a line that matches the resource’s name:
○ small_icon.xml icon is located in res/drawable, which is accessible in code via

R.drawable.small_icon. For this icon to be displayed in notification, the server
should place ‘small_icon’ value to ‘icon’ parameter.

● clickAction — ‘intent action’ with which activity is opened when a notification is pressed
on.

Creating channel for sending notification

The following order of priority is used for the channel to which notification will be sent:
1. If there is ‘channelId’ field in push notification, then RuStoreSDK will send

notification to this channel. Note that your app is responsible for creating this
channel in advance.

2. If there is no ‘channelId’ field in push notification, but your app has specified
parameter with channel in AndroidManifest.xml, then channel from
AndroidManifest.xml will be used. Your app is responsible for creating the
channel.

3. If there is no ‘channelId’ field in push notification, and no default channel has
been set in your app’s AndroidManifest.xml, then RuStoreSDK will create

472

channel itself and will send notification to it. All further notifications with no
channel specified will be sent to this channel.

Opening Activity when notification is pressed on

By default, RuStoreSDK opens activity with ‘android.intent.action.MAIN’ action whenever a
notification is pressed on. If ‘clickAction’ field is present, RuStoreSDK will open activity which
falls under ‘Intent filter’ with specified ‘action’.

For activity to open in RuStoreSDK when a notification is pressed on (this also applies to default
activity), add <category android:name="android.intent.category.DEFAULT" /> line in the
corresponding activity’s <intent-filter> element in app’s manifest. Activity will not open in
RuStoreSDK without this line.

473

Event logging

If you wish to log events of push notification library, add ‘logger’ parameter to
RuStorePushClient.init call (this parameter is not required for initialization).

To do this, ‘Logger’ interface needs to be implemented:

public interface Logger {

void verbose(String message, Throwable throwable);
void debug(String message, Throwable throwable);
void info(String message, Throwable throwable);
void warn(String message, Throwable throwable);
void error(String message, Throwable throwable);

Logger createLogger(String tag);
}

If Logger has not been sent, then default implementation with AndroidLog will be used.

public class PushLogger implements Logger {

private final String tag;

public PushLogger(String tag) {
this.tag = tag;

}

@Override
public void debug(@NonNull String message, Throwable throwable) {

Log.d(tag, message, throwable);
}

@Override
public void error(@NonNull String message, Throwable throwable) {

Log.e(tag, message, throwable);
}

@Override
public void info(@NonNull String message, @Nullable Throwable

throwable) {
Log.i(tag, message, throwable);

}

474

@Override
public void verbose(@NonNull String message, @Nullable Throwable

throwable) {
Log.v(tag, message, throwable);

}

@Override
public void warn(@NonNull String message, @Nullable Throwable

throwable) {
Log.w(tag, message, throwable);

}

@NonNull
@Override
public Logger createLogger(@NonNull String newTag) {

String combinedTag = (tag != null) ? tag + ":" + newTag :
newTag;

return new PushLogger(combinedTag);
}

}

475

Error handling

Possible errors:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support

push notifications.
● RuStoreUserUnauthorizedException() — the user is not logged in to the RuStore.
● RuStoreFeatureUnavailableException() — RuStore app is not allowed to run in the

background.
● RuStoreException(message: String) — RuStore basic error from which all the other

errors are inherited.

If you wish to use UI interface for error handling, then use resolveForPush() method:

public class RuStoreExceptionExtension {
public static void resolveForPush(RuStoreException exception,

Context context) {
// Your implementation here to resolve the exception for

push
}

}

E2E Testing of Push Notifications SDK

To have testing enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.

Enable the test mode to start testing the SDK:

RuStorePushClient.INSTANCE.init(

this,

"some_project_id",

true

)

In test mode, a test push token is generated and test push notifications will be delivered
using the following method only:

476

TestNotificationPayload testNotificationPayload = new

TestNotificationPayload(

"Test notification title",

"Test notification message",

"some_image_http_url",

data

);

RuStorePushClient.INSTANCE.sendTestNotification(testNotificationP

ayload)

.addOnCompleteListener(new OnCompleteListener<Void>() {

@Override

public void onComplete(Task<Void> task) {

if (task.isSuccessful()) {

// Process send test push success

} else {

Exception exception = task.getException();

// Process send test push error

}

}

});

477

Defold

General
Implementation example

See the example app to learn how to enable push notifications correctly.

Push notifications enabling conditions

For push notifications to be enabled, the following conditions need to be met:
1. The RuStore app is installed on the user’s device.
2. The RuStore app supports push notifications.
3. The RuStore app is allowed to run in the background.
4. The user has logged in to the RuStore.
5. App signature must match the one added to the RuStore Console.

478

https://gitflic.ru/project/rustore/defold-extension-rustore-push/file?file=main&branch=master

Connecting to the project
To connect a package to your project, you need to add it as a dependency:

https://gitflic.ru/project/rustore/defold-extension-rustore-push/file/downloadAll?branch=mast
er

We recommend that you point to a specific release

https://gitflic.ru/project/rustore/defold-extension-rustore-push/release/

Initialization

To initialize the Push Notification SDK, you need to add a value to the game_project in your
project. Open it with any convenient text editor and add the parameter to the [android] section

[android]
rustore_project_id = %your project id%
package = %your package%

%your project id% is the project ID,

%your package% is the Android package.

In the RuStore Console, the field is called “Project ID” and “Android Package Name” on the
“Push Notifications” -> “Projects” page.

Default settings for Push Message Header and Body

You can add default values for the push header and body if they are not in the message
data

[android]
push_field_title = default push title
push_field_text = default push body

The push notification service will be launched automatically on Android devices when
ruStorePush.set_on_token() is called

479

https://gitflic.ru/project/rustore/defold-extension-rustore-push/file/downloadAll?branch=master
https://gitflic.ru/project/rustore/defold-extension-rustore-push/file/downloadAll?branch=master
https://gitflic.ru/project/rustore/defold-extension-rustore-push/release/

Push token and message methods

Getting a user's push token

To receive push tokens, you need to add a callback to the listener ruStorePush.set_on_token()

If the user does not have a push token, the method will return a new push token.

local function new_token(self, token, error)
if token then

print(token)
else

print(error.error)
end

end

local function push_android()
ruStorePush.set_on_token(new_token)

end

Token replacement

From time to time, the old token may become invalid. At that, it can be issued again. These
events come to the callback ruStorePush.set_on_token()

Working with a push message

To receive information from a push notification, you need to add a callback
ruStorePush.set_on_message()

local function listener(self, payload, activated)
-- The payload arrives here.
pprint(payload)

end

local function push_android()
ruStorePush.set_on_message(listener)

end

480

Listener structure

● payload → data field for push notification (lua table)
● activated → whether the user open an app by clicking on the push (bool)

Full example

local function listener(self, payload, activated)
-- The payload arrives here.
pprint(payload)

end

local function new_token(self, token, error)
if token then

print(token)
else

print(error.error)
end

end

local function push_android()
ruStorePush.set_on_token(new_token)
ruStorePush.set_on_message(listener)

print("Rustore pushes registered")
end

function init(self)
local sysinfo = sys.get_sys_info()
if sysinfo.system_name == "Android" then

push_android()
else

print("Notifications work only Android")
end

msg.post(".", "acquire_input_focus")
end

481

Note!

Do not send push messages with notification and android.notification.title. They will be
processed by RuStore and don’t operate properly, you can’t use them to go to the app.

Send data push with the following fields

● title — for push title;
● message — for push body.

Testing push notification integration
NOTE

This section covers information related to the following programming
languages:

● Kotlin;
● Java.

For testing to be enabled, the following conditions need to be met:

● The RuStore app must be installed on the user's device.
● Your RuStore app should support the payment processing function.
● The RuStore app is allowed to run in the background.
● Your app user must be authorized on the RuStore.

To start testing the SDK, you need to enable the testing mode:

● Kotlin
● Java

Enabling test mode example

RuStorePushClient.init(
application = this ,

482

projectId = "your_push_project_id" ,
testModeEnabled = true

)

During testing mode, only test push notifications sent through the specified method will
be delivered, using a test push token generated for this purpose.

● Kotlin
● Java

Example of sending a test push notification

val testNotificationPayload = TestNotificationPayload(
title = "Test notification title",
body = "Test notification message",
imgUrl = "some_image_http_url",
data = mapOf("some_key" to "some_value")

)

RuStorePushClient.sendTestNotification(testNotificationPa
yload).addOnCompleteListener(object :
OnCompleteListener<Unit> {
override fun onFailure(throwable: Throwable) {
// Process send test push error

}

override fun onSuccess(result: Unit) {
// Process send test push success

}
})

User-group focused Push Notifications API

Often, you need to send messages to specific groups of users. You can do this easily
with RuStore and MyTracker. Just follow the instructions in the documentation to

483

integrate SDK Push and MyTracker to your app. Then, you can send messages to
different groups of users quickly and easily.
A segment is a group of users chosen based on specific criteria you set. For instance, it
could include users who generate the most revenue or those using older versions of
Android. In MyTracker, a segment is a powerful tool for analyzing your product's
audience. It lets you:

● Evaluate the size and changes within user groups.
● Target specific groups for advertising.
● Share device and user identifiers from the segment with external analytics

systems or partners.
● Create detailed reports for one or more segments without cluttering your

statistics with irrelevant data.

General
To manage segments effectively, you'll require the following items:

● project_id (project ID), ss_token (service token). These values can be obtained in
the RuStore Console. To do this, go to the Push Notifications > Projects section
on the application page (see Sending push notifications).

● push_token.
● Push tokens needed to subscribe or unsubscribe devices from newsletters on

specific topics.
● mt_api_user_id. API User ID from myTracker.
● mt_secret_key. API secret key from myTracker.
● mt_segment_id. Segment ID from myTracker.
● mt_app_id. Application ID.
● export_project_id(uuid). Export project ID.
● export_segment_id(uuid). Segment ID to export.

Creating an Export Project

POST https://vkpns-segments.rustore.ru/v1/export_settings/project/create

Request body

Parameter Type Description

484

project text Project ID push from RuStore Console

secret_key text API MyTracker secret key

api_user_id text MyTracker user ID required to download
segments

app_id int MyTracker App ID

Тело успешного ответа

Parameter Type Description

export_project_id text Export Project ID

Тело ответа ошибки

Parameter Type Description

code int Error code

message text Error message

status text Status

Getting Export Project Settings

POST https://vkpns-segments.rustore.ru/v1/export_settings/project/get

Header required а Authorization: Authorization: Bearer $ss_token.

Request body

Parameter Type Description

id text Export Project ID

Successful return

Parameter Type Description

app_id int MyTracker App ID

id text Export Project ID

project text Project ID push from RuStore
Console

Error response

485

Parameter Type Description

code int Error code

status text Error message

message text Status

Creating a segment for export

POST
https://vkpns-segments.rustore.ru/v1/export_settings/project/<export_project_id>/segme
nts/create

HEader required Authorization: Authorization: Bearer $ss_token.
Request body

Parameter Type Description

period int Unload frequency in hours

segment text Segmeter ID from MyTracker

Successful return

Parameter Type Description

export_segment_id text Segment ID to upload

Error response

Parameter Type Description

code int Error code

status text Error message

message text Status

Getting segment data for export

POST
https://vkpns-segments.rustore.ru/v1/export_settings/project/<export_project_id>/segme
nts/get

486

Header required Authorization: Authorization: Bearer $ss_token.

Successful return

Parameter Type Description

segments array<Segment> Aegments array

Segment

Parameter Type Description

id text Segment ID to upload

segment text Segmeter ID from MyTracker

period int Upload frequency in hours

is_enabled boolean Indicator showing whether this segment is

enabled or disabled.

Error response

Parameter Type Description

code int Error code

status text Error message

message text Status

Sending push notifications to a segment

POST
https://vkpns-segments.rustore.ru/v1/projects/<project_id>/segments/<mt_segment_id>/
publish

Header required Authorization: Authorization: Bearer $ss_token.

Request body

Parameter Type Description

487

message object (message) Message

Successful response

Parameter Type Description

message text Successful push message

Error response

Parameter Type Description

code int Error code

status text Error message

message text Status

Examples

Creating a project with export settings

curl --location
'https://vkpns-segments.rustore.ru/v1/export_settings/project/cr
eate' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>' \
--data '{
"project": "<project_id>",
"api_user_id": "<mt_api_user_id>",
"secret_key": "<mt_secret_key>",
"app_id": <mt_app_id>
}';

Successful return

HTTP/2 200

{
"id": "b04b48ab-3125-444f-94eb-aad511c074e7"

};

Invalid s2s token

488

HTTP/2 400

{
"code": 2000,
"status": "BAD_REQUEST",
"message": "Invalid S2S token"

};

Getting export project settings

curl --location
'https://vkpns-segments.rustore.ru/v1/export_settings/project/ge
t' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>' \
--data '{
"id": "<export_project_id>"
}';

Successful return

HTTP/2 200

{
"id": "<export_project_id>",
"app_id": <mt_app_id>,
"project": "<project_id>"

};

Creating an export segment

curl --location
'https://vkpns-segments.rustore.ru/v1/export_settings/project/<e
xport_project_id>/segments/create' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>' \
--data '{

489

"period": 24,
"segment": "<mt_segment_id>"
}';

Successful return

HTTP/2 200

{
"id": "<export_segment_id>"

};

Getting export segment data

curl --location --request POST
'https://vkpns-segments.rustore.ru/v1/export_settings/project/<e
xport_project_id>/segments/get' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>';

Successful return

HTTP/2 200

{
"segments": [
{
"id": "<export_segment_id>",
"segment": "<mt_segment_id>",
"period": 24,
"is_enabled": true

}
]

};

Sending messages to chosen segments

490

curl --location
'https://vkpns-segments.rustore.ru/v1/projects/<project_id>/segm
ents/<mt_segment_id>/publish' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>' \
--data '{
"message": {
"notification":{
"body":"This is a notification message!",
"title":"Message",
"image":"https://image-hosting.org/284239234.jpeg"
}
}

}';

Successful return

HTTP/2 200

{
"message": "payload has been successfully published to segment

<mt_segment_id>"
};

Managing segments in MyTracker

Link MyTracker to your app

To send push notifications based on segments, you must integrate both the MyTracker
SDK and Push Notification SDK into your app.

Establish segments

RuStore's push notifications enable targeting different user segments. To activate this

functionality, integration with MyTracker is necessary.

● Install and configure MyTracker SDK within your app.
● Enable segment collection through the MyTracker interface.

491

A segment is a group of users chosen based on specific criteria you set. For instance, it
could include users who generate the most revenue or those using older versions of
Android. In MyTracker, a segment is a powerful tool for analyzing your product's
audience. It lets you:

● Evaluate the size and changes within user groups.
● Target specific groups for advertising.
● Share device and user identifiers from the segment with external analytics

systems or partners.
● Create detailed reports for one or more segments without cluttering your

statistics with irrelevant data.

See the MyTracker documentation to get more details about segments. MyTracker

figures out segment sizes based on what you choose. It updates these numbers every

day, so it's easy to see how things change on the segment pages over time. The List of

Segments shows important details like sizes, when they were last calculated, and which

apps they're linked to.

List of segments

To add a new segment, go to the Segment List page and click Add.

You can use an existing segment as a starting point. Simply open the segment page

and click Duplicate.

492

Next, fill out the form with the following details:

● Name: The name you want to give to the segment, which will appear in
MyTracker lists and reports.

● Audience type: Specify whether the segment will be built based on physical
devices or user accounts.

● Account*: Choose the account to which the segment will be added. If you have
only one account, it will be selected automatically. Refer to the Account section
for more details.

● Projects: Select one or more projects whose applications will be used to form the
segment. Check the Project section for further information.

● Applications: Choose one or more applications whose audience will be used to
create the segment.

Connecting MyTracker API

To use segments, you must connect to the MyTracker API. Obtain a token from the
user's profile page to proceed.

493

Click Show to view the token. Copy the token and paste it into the "secret_key" field

when configuring settings in the push notification API.

Once the project is created, you can begin adding new segments for export. To do this,

you'll need the segment ID, which you can find in the URL after navigating to the

segment page.

Copy the idSegment from the url and use it in the request:

curl --location
'https://segments-vkpns.rustore.ru/v1/export_settings/project/<e
xport_project_id>/segments/create' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Bearer <ss_token>' \
--data '{
"period": 24,
"segment": "<mt_segment_id>"
}';

export_project_id: This is the project ID obtained during the initial setup.

mt_segment_id: This is the segment ID acquired from MyTracker.

494

ss_token: This is the service token used for authorization, obtained from the RuStore
Console on the push notifications project page.

RuStore General Push Notifications SDK

Kotlin

General 256
Google Play 260
Huawei Mobile Services 262

Initialization 265
Push notifications functional check 267
Tokens 268
Topics 270
Handling notifications 271
If HMS/FCM are already in use 274

495

General

RuStore General Push Notifications SDK is a set of packages which are required to operate
with push notifications. You can send and receive messages via multiple channels:

● FCM — Firebase Cloud Messaging;
● HMS — Huawei Mobile Services;
● RuStore.

Use SDK together with pre-configured HMS and FCM.

Implementation example

Check out the example app to learn how to integrate universal push notifications properly.

Conditions for correct operation of SDK

For general push notifications SDK to operate correctly, the following conditions need to be met:
● The RuStore app must be installed on the user's device.
● The RuStore app must support push notifications.
● The RuStore app is allowed access to work in the background.
● The user has logged in to the RuStore.
● The app signature must match the one added to the Developer Console.

Setting up the app

To initialize your app, you will need a project ID, which can be obtained from the RuStore
Console. On the app page, go to Push Notifications and then select Projects.

496

https://gitflic.ru/project/rustore/rustore-sdk-universal-push-example

Importing SDK to your project

Connect the repository in settings.gradle:

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {

google()
mavenCentral()
maven {url = uri("https://developer.huawei.com/repo/")}
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

}

Dependency injection

Add the following code to your build.gradle to inject the dependency at the app level:

dependencies {

497

https://developer.huawei.com/repo/
https://artifactory-external.vkpartner.ru/artifactory/maven

implementation 'ru.rustore.sdk:universalpush:1.0.0'
implementation 'ru.rustore.sdk:universalrustore:1.0.0'
implementation 'ru.rustore.sdk:universalhms:1.0.0'
implementation 'ru.rustore.sdk:universalfcm:1.0.0'

}

Add the following rule when using the SDK in your app along with ProGuard:

-keep public class com.vk.push.** extends android.os.Parcelable

Follow the steps below to work with FCM and HMS:
● add to build.gradle at the app level

plugins {
// ...

// required for fcm
id 'com.google.gms.google-services'
// required for hms
id 'com.huawei.agconnect'

}

● add to build.gradle at the root level

dependencies {
// for fcm
classpath 'com.google.gms:google-services:4.3.15'
// for hms
classpath 'com.huawei.agconnect:agcp:1.6.0.300'
classpath 'com.android.tools.build:gradle:7.4.0'

}

● add to settings.gradle at the root level

pluginManagement {
repositories {

google()
mavenCentral()
gradlePluginPortal()
// required for hms
maven {url = uri("https://developer.huawei.com/repo/")}

}

498

}

499

Google Play

Setting up the app

To publish an app on Google Play, you only need to add dependencies which are required to
send push notifications through FCM and RuStore. To get started with FCM, set up a project in
Firebase.

1. Create a new project in the Firebase Console.
2. In the Firebase Console, select the project you plan to enable push notifications for.
3. In the left menu, next to the project name, click the gear icon and go to Project Settings.
4. Go to Your apps and download google-services.json.
5. Once downloaded, move google-services.json to app/google-services.json.

Importing to your project

To publish your app on Google Play Store, you are required to use universalfcm,
universalrustore, and universalpush packages only.

Connect the repository in settings.gradle at the root level:

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {

google()
mavenCentral()
// required for rustore
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

}

Dependency injection

Add the following code to your build.gradle to inject the dependency at the app level:

dependencies {
implementation('ru.rustore.sdk:universalpush:0.1.1')
implementation('ru.rustore.sdk:universalrustore:0.1.0')
implementation('ru.rustore.sdk:universalfcm:0.1.0')

}

Add the following rule when using the SDK in your app along with ProGuard:

500

https://console.firebase.google.com/u/0/
https://artifactory-external.vkpartner.ru/artifactory/maven

-keep public class com.vk.push.** extends android.os.Parcelable

Follow the steps below to work with FCM:
● add to build.gradle at the app level

plugins {
// ...

// required for fcm
id 'com.google.gms.google-services'

}

● add to build.gradle at the root level

dependencies {
// required for fcm
classpath 'com.google.gms:google-services:4.3.15'

}

501

Huawei Mobile Services

Setting up the app

To publish an app on AppGallery, you only need to add dependencies which are required to
send push notifications through HMS and RuStore. To get started with HMS, set up a project in
developer.huawei.com.

1. Create a new project in developer.huawei.com.
2. In AppGallery Connect, select the project you plan to enable push notifications for.
3. Go to Project Settings - Main.
4. Then go to App data and download agconnect-services.json.
5. Once downloaded, move agconnect-services.json to app/agconnect-services.json.

Importing to your project

To publish your app on AppGallery, you are required to use universalfcm, universalrustore, and
universalpush packages only.

Connect the repository in settings.gradle:

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {

google()
mavenCentral()
maven {url = uri("https://developer.huawei.com/repo/")}
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

}

Dependency injection

Add the following code to your build.gradle to inject the dependency at the app level:

dependencies {
implementation('ru.rustore.sdk:universalpush:0.1.1')
implementation('ru.rustore.sdk:universalrustore:0.1.0')
implementation('ru.rustore.sdk:universalhms:0.1.0')

}

Add the following rule when using the SDK in your app along with ProGuard:

502

https://developer.huawei.com/consumer/ru/console
https://developer.huawei.com/consumer/ru/console
https://developer.huawei.com/repo/
https://artifactory-external.vkpartner.ru/artifactory/maven

-keep public class com.vk.push.** extends android.os.Parcelable

Follow the steps below to work with HMS:
● add to build.gradle at the app level

plugins {
// ...

// required for hms
id 'com.huawei.agconnect'

}

● add to build.gradle at the root level

dependencies {
// for hms
classpath 'com.huawei.agconnect:agcp:1.6.0.300'
classpath 'com.android.tools.build:gradle:7.4.0'

}

● add to settings.gradle at the root level

pluginManagement {
repositories {

google()
mavenCentral()
gradlePluginPortal()
// required for hms
maven {url = uri("https://developer.huawei.com/repo/")}

}
}

503

https://developer.huawei.com/repo/

Initialization

To initialize your app, you need to add the following code to App.kt:

import android.app.Application
import ru.rustore.sdk.universalpush.RuStoreUniversalPushClient
import
ru.rustore.sdk.universalpush.firebase.provides.FirebasePushProvider
import ru.rustore.sdk.universalpush.hms.providers.HmsPushProvider
import ru.rustore.sdk.universalpush.rustore.logger.DefaultLogger
import
ru.rustore.sdk.universalpush.rustore.providers.RuStorePushProvider

class App: Application() {

private val tag = "UniversalPushExampleApp"

override fun onCreate() {
super.onCreate()

RuStoreUniversalPushClient.init(
context = this,
rustore = RuStorePushProvider(

application = this,
projectId = "m3Id6aPeXq36mp...",
logger = DefaultLogger(tag = tag),

),
firebase = FirebasePushProvider(

context = this,
),
hms = HmsPushProvider(

context = this,
appid = "108003365",

),
)

}
}

You need to initialize those push notification providers that are currently in use.

RuStoreUniversalPushClient.init(
context = this,
rustore = RuStorePushProvider(

application = this,

504

projectId = "m3Id6aPeXq36mp...",
logger = DefaultLogger(tag = tag),

),
hms = HmsPushProvider(

context = this,
appid = "108003365",

),
)

505

Push notifications functional check

To check whether push notification providers are available, call the checkAvailability(context)
method.

RuStoreUniversalPushClient.checkAvailability(this)
.addOnCompleteListener(object :

OnCompleteListener<Map<String, Boolean>> {
override fun onSuccess(result: Map<String,

Boolean>) {
Log.w(tag, "get availability success

${result}")
}

override fun onFailure(throwable: Throwable) {
Log.e(tag, "get tokens err: ${throwable}")

}
})

result — dictionary with keys:

public const val UNIVERSAL_FCM_PROVIDER: String = "firebase"
public const val UNIVERSAL_HMS_PROVIDER: String = "hms"
public const val UNIVERSAL_RUSTORE_PROVIDER: String = "rustore"

To check the availability of a specific push notification provider:

if (result[UNIVERSAL_HMS_PROVIDER] ?: false) {
// hms provider is available

}

506

Tokens

Receiving tokens

Call the getTokens() method to get a list of tokens for all providers.

RuStoreUniversalPushClient.getTokens()
.addOnCompleteListener(object :

OnCompleteListener<Map<String, Boolean>> {
override fun onSuccess(result: Map<String,

Boolean>) {
Log.w(tag, "get availability success

${result}")
}

override fun onFailure(throwable: Throwable) {
Log.e(tag, "get tokens err: ${throwable}")

}
})

result — dictionary with keys:

public const val UNIVERSAL_FCM_PROVIDER: String = "firebase"
public const val UNIVERSAL_HMS_PROVIDER: String = "hms"
public const val UNIVERSAL_RUSTORE_PROVIDER: String = "rustore"

To get a specific token, use the code:

result[UNIVERSAL_FCM_PROVIDER].orEmpty()

Deleting tokens

To delete tokens, you need to call the deleteTokens(token) method and pass a dictionary with a
list of tokens.

RuStoreUniversalPushClient.deleteTokens(
mapOf(

UNIVERSAL_RUSTORE_PROVIDER to "xxx",
UNIVERSAL_FCM_PROVIDER to "yyy",
UNIVERSAL_HMS_PROVIDER to "zzz"

507

)
)

where xxx, yyy, zzz — tokens from different push notification providers.

508

Topics

Subscribing to a topic

To subscribe to a topic, call the subscribeToTopic("topic") method.

RuStoreUniversalPushClient.subscribeToTopic("some_topic")

Unsubscribing from a topic

To unsubscribe from a topic, call the unsubscribeToTopic("topic") method.

RuStoreUniversalPushClient.unsubscribeFromTopic("some_topic")

509

Handling events

Handling onDeletedMessages Events
To manage the onDeletedMessages event, you should integrate an
OnDeletedMessagesListener callback in the App class after initializing
RuStoreUniversalPushClient. When the onDeletedMessages event is triggered, the callback will
be invoked, providing you with the providerType parameter. This parameter enables you to
determine which push provider triggered the event.

RuStoreUniversalPushClient.setOnDeletedMessagesListener { providerType ->
// process event

}

Handling onNewToken Events
To manage the onNewToken event, it is necessary to include an OnNewTokenListener callback
within the App class after initializing RuStoreUniversalPushClient. When the onNewToken event
is triggered, a callback function will be invoked, and it will provide the following parameters:

● providerType — determines which push provider triggered the event.

● token — new push token.

RuStoreUniversalPushClient.setOnNewTokenListener { providerType, token ->
// process event

}

Handling notifications

To receive notifications, it's essential to incorporate an OnMessageReceiveListener callback
within the App class once you have initialized RuStoreUniversalPushClient. If notifications are
delivered via the universal API, they will undergo deduplication on the client side, and the
notification reception callback will be triggered just once.

In cases where the notification object contains data, RuStoreSDK will automatically handle the
notification display. However, if you prefer RuStoreSDK not to handle the notification display,
you can utilize the data object while keeping the notification object empty. Nevertheless, the
OnMessageReceiveListener callback will still be invoked. You can retrieve the push notification
payload (Map<String, String>) from the remoteMessage.data field.

510

RuStoreUniversalPushClient.setOnMessageReceiveListener { remoteMessage ->
// process message

}

Handling push provider errors
To manage errors, it's essential to include an OnPushClientErrorListener callback in the App
class following the initialization of RuStoreUniversalPushClient. This callback will be invoked
with specific parameters when errors occur:

● providerType — determines which push provider triggered the event..
● errors — list of errors.

RuStoreUniversalPushClient.setOnPushClientErrorListener { providerType, error ->
// process error

}

If HMS/FCM are already in use

If you use FCM/HMS services in your applications, add additional code to the services.

FCM

Add the following code to the service for FCM:

import
ru.rustore.sdk.universalpush.firebase.messaging.toNotificationPaylo
ad

class MyFirebaseMessagingService: FirebaseMessagingService() {
override fun onMessageReceived(message: RemoteMessage) {

super.onMessageReceived(message)

RuStoreUniversalPushManager.processMessage(message.toNotificationPa
yload())

511

}

override fun onNewToken(token: String) {
super.onNewToken(token)

RuStoreUniversalPushManager.processToken(token)
}

}

HMS

Add the following code to the service for HMS:

import
ru.rustore.sdk.universalpush.hms.messaging.toNotificationPayload

class MyMessagePushService: HmsMessageService() {
override fun onMessageReceived(msg: RemoteMessage?) {

super.onMessageReceived(msg)

RuStoreUniversalPushManager.processMessage(msg.toNotificationPayloa
d())

}

override fun onNewToken(token: String?) {
super.onNewToken(token)

RuStoreUniversalPushManager.processToken(token)
}

}

SDK Release Notes

SDK version 1.0.0

● Added deduplication of push notifications
● Added callbacks for:

- Handling notifications
- Handling onDeletedMessages events
- Handling onNewToken events

512

- Handling push provider errors

513

App Feedback and Rating SDK

Android (Kotlin/Java)
General 277
Importing SDK to your project 279
Creating RuStoreReviewManager 280
Getting ReviewInfo object 281
Starting app rating 282
Possible errors 283
RuStore Change History Feedback and Rating SDK 286

514

General

RuStore In-app Review SDK prompts the user to rate your app and leave feedback on the
RuStore without exiting the app.

Rating and feedback user scenarios may be run at any time throughout the user’s path in your
app. The user can rate your app from 1 to 5 and leave feedback. Feedback is optional.

Implementation example

See the example app to learn how to integrate rating and feedback SDK correctly.

Use case example

Conditions for correct operation of SDK

For rating and feedback SDK to operate correctly, the following conditions need to be met:
1. Android 6.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The user has logged in to the RuStore.
5. The app should be already installed on RuStore.

When to ask to rate and leave feedback

Use the tips below to decide when to ask the user to rate and leave feedback:
● Start the process once the user has been using your app for long enough.
● Avoid starting it too often as this will impair your app’s user experience and limit the use

or SDK ratings.
● Avoid using calls to action like “Rate App” button as the user could have already reached

the process starting limit.

515

https://gitflic.ru/project/rustore/rustore-sdk-review-example

● Your app should not ask the user any questions before the start or while the process is
running, including their opinion (“Do you like the app?”) or predictive questions (“Would
you give this app 5 stars?”).

Design tips

Use the tips below to decide how to integrate the process:
● Display the process as is, without any intervention or modification of existing design,

including size, opacity, shape and other properties.
● Add nothing on top or on sides of the process.
● The process should open on top of all layers. Don’t close the process after starting. The

process will close by itself after an express action by the user.

516

Importing SDK to your project

Connect the repository:

repositories {
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

Dependency injection

Add the following code to your configuration file to inject the dependency:

dependencies {
implementation("ru.rustore.sdk:pushclient:2.0.0")

}

517

Creating RuStoreReviewManager

To manage the rating process, you need to create RuStoreReviewManager using
RuStoreReviewManagerFactory:

val manager = RuStoreReviewManagerFactory.create(context)

518

Getting ReviewInfo object

Call requestReviewFlow() in advance before calling launchReviewFlow(reviewInfo) to prepare
necessary information to display.

ReviewInfo has a lifetime — about five minutes.

manager.requestReviewFlow().addOnCompleteListener(object :
OnCompleteListener<ReviewInfo> {

override fun onFailure(throwable: Throwable) {
// Handle error

}

override fun onSuccess(result: ReviewInfo) {
// Save reviewInfo

}
})

If onSuccess response is received, save ReviewInfo locally to call
launchReviewFlow(reviewInfo) later.

If onFailure is received, displaying the error to the user is not recommended because the user
didn’t start this process.

519

Starting app rating

To start the app rating and feedback form on the user's side, call launchReviewFlow(reviewInfo)
method using ReviewInfo received earlier.

manager.launchReviewFlow(reviewInfo).addOnCompleteListener(object:
OnCompleteListener<Unit> {

override fun onFailure(throwable: Throwable) {
// Review flow has finished, continue your app flow.

}

override fun onSuccess(result: Unit) {
// Review flow has finished, continue your app flow.

}
})

Wait for notification on form completion by the user in onSuccess or onFailure to continue
operation of the app.

Displaying any additional forms related with rating and feedback after completion of the
rating form is not recommended, whatever the result is (onSuccess or onFailure).

Frequently calling launchReviewFlow will not result in the rating form being displayed to the user
because permitted display is controlled by the RuStore.

520

Possible errors

Possible errors you can get in onFailure:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support the

start of the rating and feedback process.
● RuStoreUserUnauthorizedException() — the user is not logged in to RuStore.
● RuStoreUserBannedException() — the user is blocked in RuStore.
● RuStoreApplicationBannedException() — the app is blocked in RuStore.
● RuStoreRequestLimitReached() — too little time elapsed since the last display of the

process.
● RuStoreReviewExists() — this user has already rated your app.
● RuStoreInvalidReviewInfo() — problems with ReviewInfo.
● RuStoreException(message: String) — RuStore basic error from which all the other

errors are inherited.

521

RuStore Change History Feedback and Rating SDK

SDK Version 1.0.1

● Internal SDK update

SDK Version 1.0.0

● Internal SDK update

SDK Version 0.2.0

● Class packages have been brought to a unified form ru.rustore.**

SDK Version 0.1.6
● Modified the await() method for the Task API.

SDK Version 0.1.5

● Fixed the Intent Redirection vulnerability that prevented the app from being published on
Google Play.

SDK Version 0.1.4
● This is an internal update of SDK.

SDK Version 0.1.3
● Method launchReviewFlow(activity, reviewInfo) marked as deprecated. Use

launchReviewFlow(reviewInfo).

522

Unreal
RuStore In-app Review SDK (1.0) manual

General information

RuStore In-app Review SDK enables users to rate your app without closing it.

The rate prompt can be started at any time the user is in your app. The user can evaluate your app within a
scale from 1 to 5 and leave a comment (comments are optional).

User scenario example

Figure 1. Rate and comment scenario example.

Conditions for proper SDK performance

For In-app Review SDK to work properly, the following requirements must be met:

1. OS Android 7.0 or later.
2. RuStore is installed on the user's device.
3. The RuStoreApp version on the device is up-to-date.
4. The user is authorized in RuStore.
5. The app is published in RuStore.

When to ask users to rate and comment?

Follow these recommendations to decide when to prompt the users to rate and comment your app:

● Start the flow when the user has experienced your app for quite enough time.
● Do not start the flow too often—this will negatively affect the user's experience and limit the

SDK rating usage.
● Do not call the user for action, for example, do not use the "Rate this app" button, as the user

might have already exceeded the flow start limit.
● Your app shouldn't ask the user any questions before the flow starts or during the flow including

questions about their opinion (example: "Do you like the app?") or forecast questions (example:
"Would you give this app 5 stars?").

Design recommendations

Follow these recommendations to make a decision on how to implement your flow:

● Display your flow as is, without altering the design—including size, opacity, form, and other
properties.

● Do not add anything at the front or at the borders of the flow.
● The flow should open on top of all layers. Do not close the flow after it starts. The flow will stop

by itself after overt user action.

Connecting to project

1. Copy the contents of the “Plugins” folder from the official RuStore repository on gitflic to the
“Plugins” folder of your project. Restart Unreal Engine, in the plug-in list (Edit → Plugins →
Project → Mobile) select “RuStoreReview” and “RuStoreCore”.

523

https://gitflic.ru/project/rustore/rustore-unreal-engine-review-example

2. In the “YourProject.Build.cs” file of the PublicDependencyModuleNames list connect the
“RuStoreCore” and “RuStoreReview” modules.

3. In th project settings (Edit → Project Settings → Android) set the Minimum SDK Version
parameter to 24 or later, Target SDK Version - to 31 or later.

RuStoreReviewManager initialization

To work with rates and reviews, initialize RuStoreReviewManager:

Initialization
URuStoreReviewManager::Instance()->Init();

Blueprints implementation example:

Important:

1. The Init() call ties the object to the scene root, and, If no further work with the object is needed,
execute the Dispose() method to free memory.

The Dispose method call will untie the object from root and securely complete all sent requests.

Initialization
URuStoreReviewManager::Instance()->Dispose();

If you need to check whether the library is initialized or not, use the getIsInitialized(), its value is true if
the library is initialized and false if Init hasn't been called yet.

Preparing the app for launch

Call RequestReviewFlow() in advance, before calling LaunchReviewFlow(), to prepare the necessary
information to display.

RequestReviewFlow
long requestId =
URuStoreReviewManager::Instance()->RequestReviewFlow(

[](long requestId) {
// Process response
},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error
}

);

Blueprint implementation:

If the Success callback is received, then, in approximately 5 minuses you can start the rate and review
flow—LaunchReviewFlow().

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

524

https://confluence.vk.team/pages/viewpage.action?pageId=884579864#id-%25D0%2594%25D0%25BE%25D0%25BA%25D1%2583%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582%25D0%25B0%25D1%2586%25D0%25B8%25D1%258FRuStoreInappReviewSDK-%25D0%2597%25D0%25B0%25D0%25BF%25D1%2583%25D1%2581%25D0%25BA%25D0%25BE%25D1%2586%25D0%25B5%25D0%25BD%25D0%25BA%25D0%25B8%25D0%25BF%25D1%2580%25D0%25B8%25D0%25BB%25D0%25BE%25D0%25B6%25D0%25B5%25D0%25BD%25D0%25B8%25D1%258F
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

Launching rating flow

Call the LaunchReviewFlow() method to launch the user's rating and review flow (Figure 1.).

Each request returns requestId that is unique per app launch. Each event returns requestId of the request
that triggered this event.

LaunchReviewFlow
long requestId = URuStoreReviewManager::Instance()->LaunchReviewFlow(

[](long requestId) {
// Process response
},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

Blueprint implementation:

To continue the app flow, wait for the notification after the user stops the flow in onSuccess or onFailure.

After the rate flow is finished, we do not recommend you to display any additional flows related to rating
or review—regardless of the result (onSuccess or onFailure).

Frequent LaunchReviewFlow calls will not start rate flow for the user, as the display limit is configured
on RuStore side.

Error handling

Errors that occur are passed to the onFailure handler of the SDK methods.

Error structure:

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreError
{

GENERATED_USTRUCT_BODY()
FURuStoreError()
{

name = "";
description = "";

}
UPROPERTY(BlueprintReadOnly)
FString name;
UPROPERTY(BlueprintReadOnly)
FString description;

};

● name - name of the error.
● description - error description.

Possible errors you can receive in onFailure:

525

● RuStoreNotInstalledException — RuStore is not installed on the user's device.
● RuStoreOutdatedException — the RuStore app installed on the user's device does not support the

rate and review flow.
● RuStoreUserUnauthorizedException — the user is not authorized in RuStore.
● RuStoreRequestLimitReached - too little time has passed since the latest flow display.
● RuStoreReviewExists — this user already rated your app.
● RuStoreInvalidReviewInfo — something is wrong with ReviewInfo.
● RuStoreException — base RuStore error from which all other errors are inherited.

Unity
General 286
Importing SDK to your project 288
Creating RuStoreReviewManager 289
App release preparation 290
Starting app rating 291
Handling errors 292

526

General

RuStore In-app Review SDK prompts the user to rate your app and leave feedback on the
RuStore without exiting the app.

Rating and feedback user scenario may be run at any time throughout the user’s path in your
app. The user can rate your app from 1 to 5 and leave feedback. Feedback is optional.

Use case example

Conditions for correct operation of SDK

For rating and feedback SDK to operate correctly, the following conditions need to be met:

1. Android 7.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The user has logged in to the RuStore.
5. The app should be already published on RuStore.

When to ask to rate and leave feedback

Use the tips below to decide when to ask the user to rate and leave feedback:
● Start the process once the user has been using your app for long enough.
● Avoid starting it too often as this will impair your app’s user experience and limit the use

or SDK ratings.
● Avoid using calls to action like “Rate App” button as the user could have already reached

the process starting limit.
● Your app should not ask the user any questions before the start or while the process is

running, including their opinion (“Do you like the app?”) or predictive questions (“Would
you give this app 5 stars?”).

527

Design tips

Use the tips below to decide how to integrate the process:
● Display the process as is, without any intervention or modification of existing design,

including size, opacity, shape and other properties.
● Add nothing on top or on sides of the process.
● The process should open on top of all layers. Don’t close the process after starting. The

process will close by itself after an express action by the user.

528

Importing SDK to your project

To get started, you need to download the RuStore Review SDK and import it to your project
(Assets → Import Package → Custom Package). Dependencies are added automatically using
the External Dependency Manager (included in SDK).

Minimum API level must be set to at least 24. Application minification (ProGuard/R8) is currently
not supported, it must be disabled in the project settings (File → Build Settings → Player
Settings → Publishing Settings → Minify).

529

https://cloud.mail.ru/public/ZLh9/BAxqnFpKM

Creating RuStoreReviewManager

To manage the rating process, you need to create RuStoreReviewManager using
RuStoreReviewManagerFactory:

RuStoreReviewManager.Instance.Init();

530

App release preparation

Call RequestReviewFlow() in advance before calling LaunchreViewFlow() to prepare the
essential information to display.

RuStoreReviewManager.Instance.RequestReviewFlow(
onFailure: (error) => {

// Handle error
},
onSuccess: () => {

// Handle success
});

If onSuccess is received, you can start requesting app feedback and rating by calling
LaunchReviewFlow() within about five minutes.

If onFailure is received, we do not recommend displaying the user's error, since the user did not
start this process.

531

Starting app rating

To start the app rating and feedback form on the user's side, call launchReviewFlow(reviewInfo)
method.

RuStoreReviewManager.Instance.LaunchReviewFlow(
onFailure: (error) => {

// Handle error
},
onSuccess: () => {

// Handle success
});

Wait for notification on form completion by the user in onSuccess or onFailure to continue
operation of the app.

Displaying any additional forms related with rating and feedback after completion of the
rating form is not recommended, whatever the result is (onSuccess or onFailure).

Frequently calling launchReviewFlow will not result in the rating form being displayed to the user
because permitted display is controlled by the RuStore.

532

Handling errors

The errors are processed by onFailure using SDK methods.

Error structure:

public class RuStoreError {

public string name;
public string description;

}

● name — error name;
● description — error description.

Possible errors you can get in onFailure:
● RuStoreNotInstalledException — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException — RuStore installed on a user's device doesn’t support the

start of the rating and feedback process.
● RuStoreUserUnauthorizedException — the user is not logged in to RuStore.
● RuStoreRequestLimitReached — too little time elapsed since the last display of the

process.
● RuStoreReviewExists — this user has already rated your app.
● RuStoreInvalidReviewInfo — problems with ReviewInfo.
● RuStoreException — RuStore basic error from which all the other errors are inherited.

533

Flutter
General 294
Importing SDK to your Project 296
Feedback request 297

534

General

RuStore In-app Review SDK prompts the user to rate your app and leave feedback on the
RuStore without exiting the app.

Rating and feedback user cases may be run at any time throughout the user’s path in your app.
The user can rate your app from 1 to 5 and leave feedback. Feedback is optional.

Use case example

Conditions for correct operation of SDK

For rating and feedback SDK to operate correctly, the following conditions need to be met:
1. Android 7.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The user has logged in to the RuStore.
5. The app should be published on RuStore.

When to ask to rate and leave feedback

Use the tips below to decide when to ask the user to rate and leave feedback:
● Start the process once the user has been using your app for long enough.
● Avoid starting it too often as this will impair your app’s user experience and limit the use

or SDK ratings.
● Avoid using calls to action like “Rate App” button as the user could have already reached

the process starting limit.
● Your app should not ask the user any questions before the start or while the process is

running, including their opinion (“Do you like the app?”) or predictive questions (“Would
you give this app 5 stars?”).

535

Design tips

Use the tips below to decide how to integrate the process:
● Display the process as is, without any intervention or modification of existing design,

including size, opacity, shape and other properties.
● Add nothing on top or on sides of the process.
● The process should open on top of all layers. Don’t close the process after starting. The

process will close by itself after an express action by the user.

536

Importing SDK to your Project

Run the following command to import the package to your project:

flutter pub add flutter_rustore_review

Dependency injection

This command adds a line to pubspec.yaml.

dependencies:
flutter_rustore_review: ^0.0.3

537

Feedback request

To display a feedback and rating window, it is required to perform the plugin initialization:

RustoreReviewClient.initialize();

Once initialization is completed, you can make a request and display a form.

RustoreReviewClient.request().then((value) {
RustoreReviewClient.review().then((value) {
print("success review");

}, onError: (err) {
print("on err ${err}");

});
});

Gogot

General

RuStore In-app Review SDK prompts the user to rate your app and leave feedback on the
RuStore without exiting the app.

Rating and feedback user scenarios may be run at any time throughout the user’s path in your
app. The user can rate your app from 1 to 5 and leave feedback. Feedback is optional.

Implementation example

See the example app to learn how to integrate rating and feedback SDK correctly.

Use case example

538

https://gitflic.ru/project/rustore/rustore-sdk-review-example

Conditions for correct operation of SDK

For rating and feedback SDK to operate correctly, the following conditions need to be met:
6. Android 6.0 or later.
7. The RuStore app is installed on the user's device.
8. The current RuStoreApp version is installed on the user's device.
9. The user has logged in to the RuStore.
10. The app should be already installed on RuStore.

When to ask to rate and leave feedback

Use the tips below to decide when to ask the user to rate and leave feedback:
● Start the process once the user has been using your app for long enough.
● Avoid starting it too often as this will impair your app’s user experience and limit the use

or SDK ratings.
● Avoid using calls to action like “Rate App” button as the user could have already reached

the process starting limit.
● Your app should not ask the user any questions before the start or while the process is

running, including their opinion (“Do you like the app?”) or predictive questions (“Would
you give this app 5 stars?”).

Design tips

Use the tips below to decide how to integrate the process:
● Display the process as is, without any intervention or modification of existing design,

including size, opacity, shape and other properties.
● Add nothing on top or on sides of the process.
● The process should open on top of all layers. Don’t close the process after starting. The

process will close by itself after an express action by the user.

539

Unset

Importing SDK to your project

1. Copy the plugin projects from the official RuStore repository on GitFlic.
2. Open the Android project from the godot_plugin_libraries folder in your IDE.
3. Place the package godot-lib.xxx.yyy.template_release.aar, where xxx.yyy is the version

of your Godot Engine edition, into the godot_plugin_libraries / libs folder.
4. Build the project with the gradle assemble command.

If the assembly is successful, files will be created in the godot_example / android / plugins
folder:

RuStoreGodotReview.gdap
RuStoreGodotReview.aar
RuStoreGodotCore.gdap
RuStoreGodotCore.aar
WARNING
Please note that plugin libraries must be built for your version of Godot Engine.

5. Copy the contents of the godot_example/android/plugins folder to
your_project/android/plugins folder.

6. In the Plugins list tick the RuStore Godot Review and RuStore Godot Core plugins in
your Android build preset

Feedback management
Before you start
To work with feedback SDK, you need to create an instance of RuStoreGodotReviewManager.

Initialisation

var _review_client: RuStoreGodotReviewManager = null

func _ready:
_review_client = RuStoreGodotReviewManager.get_instance()

Getting started
Call request_review_flow in advance of calling launch_review_flow to prepare the necessary
information for the screen display. The lifetime of ReviewInfo is about five minutes.
You must subscribe to events once before using the method:

540

Unset

Unset

on_request_review_review_flow_success;
on_request_review_flow_failure.
Subscription to events
func _ready():

Initialisation of _review_client

_review_client.on_request_review_flow_success.connect(_on_request_review_flow_s
uccess)

_review_clientt.on_request_review_flow_failure.connect(_on_request_review_flow_
failure)

func _on_request_review_review_flow_success():
pass

func _on_request_review_review_flow_failure(error: RuStoreError):
pass

Calling the request_review_flow method
_review_client.request_review_flow()

The callback on_request_review_review_flow_failure returns a RuStoreError object with error
information.

541

Unset

Unset

Launching SDK
To launch Feedback SDK for your app, call the launch_review_flow method using the previously
retrieved ReviewInfo.
You must subscribe to the events once before using the method:

on_request_review_flow_success;
on_request_review_review_flow_failure.
Subscription to events
func _ready():

Initialisation of _review_client

_review_client.on_launch_review_flow_success.connect(_on_launch_review_flow_suc
cess)

_review_client.on_launch_review_review_flow_failure.connect(_on_launch_review_f
low_failure)

func _on_launch_review_review_flow_success():
pass

func _on_launch_review_review_flow_flow_failure(error: RuStoreError):
pass

Calling the launch_review_flow method
_review_client.launch_review_flow()

Wait for a notification that the user has completed the form in on_launch_review_flow_success
or on_launch_review_flow_failure to continue the application.
The callback on_launch_review_flow_flow_failure returns a RuStoreError object with error
information.

Error handling
The errors that occur can be retrieved in *_failure events.

Error structure

542

Unset

class_name RuStoreError extends Object

var description: String

func _init(json: String = ""):
if json == "":

description = ""
else:

var obj = JSON.parse_string(json)
description = obj["detailMessage"]

● description – error description.

543

Possible errors

Possible errors you can get in onFailure:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support the

start of the rating and feedback process.
● RuStoreUserUnauthorizedException() — the user is not logged in to RuStore.
● RuStoreUserBannedException() — the user is blocked in RuStore.
● RuStoreApplicationBannedException() — the app is blocked in RuStore.
● RuStoreRequestLimitReached() — too little time elapsed since the last display of the

process.
● RuStoreReviewExists() — this user has already rated your app.
● RuStoreInvalidReviewInfo() — problems with ReviewInfo.
● RuStoreException(message: String) — RuStore basic error from which all the other

errors are inherited.

544

React Native

General

RuStore In-app Review SDK prompts the user to rate your app and leave feedback on the
RuStore without exiting the app.

Rating and feedback user scenarios may be run at any time throughout the user’s path in your
app. The user can rate your app from 1 to 5 and leave feedback. Feedback is optional.

Implementation example

See the example app to learn how to integrate rating and feedback SDK correctly.

Use case example

Conditions for correct operation of SDK

For rating and feedback SDK to operate correctly, the following conditions need to be met:
11. Android 6.0 or later.
12. The RuStore app is installed on the user's device.
13. The current RuStoreApp version is installed on the user's device.
14. The user has logged in to the RuStore.
15. The app should be already installed on RuStore.

When to ask to rate and leave feedback

Use the tips below to decide when to ask the user to rate and leave feedback:
● Start the process once the user has been using your app for long enough.
● Avoid starting it too often as this will impair your app’s user experience and limit the use

or SDK ratings.

545

https://gitflic.ru/project/rustore/rustore-sdk-review-example

● Avoid using calls to action like “Rate App” button as the user could have already reached
the process starting limit.

● Your app should not ask the user any questions before the start or while the process is
running, including their opinion (“Do you like the app?”) or predictive questions (“Would
you give this app 5 stars?”).

Design tips

Use the tips below to decide how to integrate the process:
● Display the process as is, without any intervention or modification of existing design,

including size, opacity, shape and other properties.
● Add nothing on top or on sides of the process.
● The process should open on top of all layers. Don’t close the process after starting. The

process will close by itself after an express action by the user.

546

Unset

Getting started
Run the following command to connect the package to the project.

// HTTPS.
npm install
git+https://git@gitflic.ru/project/rustore/react-native-rustore-review-sdk.git

// SSH
npm install
git+ssh://git@gitflic.ru/project/rustore/react-native-rustore-review-sdk.git

Feedback management
Preparing to work with evaluations
To display the evaluation window and review form, the plugin needs to be initialized.

547

Unset

RustoreReviewClient.init();

Start the evaluation of the application

After initialisation, you can query and display the form.

try {

const isRequested = await RustoreReviewClient.requestReviewFlow();

if (isRequested) {

await RustoreReviewClient.launchReviewFlow();

}

} catch (err) {

console.log(err);

}

Possible errors

Possible errors you can get in onFailure:
● RuStoreNotInstalledException() — user’s device doesn’t have RuStore installed.
● RuStoreOutdatedException() — RuStore installed on a user's device doesn’t support the

start of the rating and feedback process.
● RuStoreUserUnauthorizedException() — the user is not logged in to RuStore.
● RuStoreUserBannedException() — the user is blocked in RuStore.
● RuStoreApplicationBannedException() — the app is blocked in RuStore.
● RuStoreRequestLimitReached() — too little time elapsed since the last display of the

process.
● RuStoreReviewExists() — this user has already rated your app.
● RuStoreInvalidReviewInfo() — problems with ReviewInfo.

548

● RuStoreException(message: String) — RuStore basic error from which all the other
errors are inherited.

549

App Update SDK

Kotlin/Java

General Information 299
Importing SDK to your project 300
Creating an Update Manager 301
Checking for updates 302
Downloading updates 304
Installing updates 306
Possible errors 307

550

General Information

RuStore In-app updates SDK enable users to be kept up to date with the latest app version on
their device. This allows them to stay informed about any performance enhancements or bug
fixes that have been implemented.

Additionally, the SDK offers the ability to notify users of a new version and provide an option to
install it. The installation process can occur in the background, while the user can track the
progress of the update.

Use case example

Conditions for correct operation of SDK

For RuStore In-app updates SDK to operate correctly, the following conditions need to be met:
1. Android 6.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The RuStore app is allowed to install applications.

551

Importing SDK to your project

Connect the repository:

repositories {
maven {

url =
uri("https://artifactory-external.vkpartner.ru/artifactory/maven")

}
}

Dependency injection

Add the following code to your configuration file to inject the dependency:

dependencies {
implementation("ru.rustore.sdk:appupdate:2.0.0")

}

552

Creating an Update Manager

Before you start, create an update manager using the Factory method:

val updateManager = RuStoreAppUpdateManagerFactory.create(context)

553

Checking for updates

Before requesting an update, check if it is available for your application. To check for updates,
call the getAppUpdateInfo() method. When this method is called, the following conditions will be
verified:

1. The RuStore app is installed on the user's device.
2. The current RuStoreApp version is installed on the user's device.
3. The user and the app should not be blocked on the RuStore.

Upon calling this method, an AppUpdateInfo object will be returned which contains information
regarding any required updates. It is recommended to request and cache this object in advance,
ensuring a prompt and convenient update download process for the user.

var appUpdateInfo: AppUpdateInfo? = null
updateManager

.getAppUpdateInfo()

.addOnSuccessListener { info ->
appUpdateInfo = info

}
.addOnFailureListener { throwable ->

}

The updateInfo object contains a set of parameters needed to determine if an update is
available:

● updateAvailability — update availability::
○ UNKNOWN (Int == 0) — default status;
○ UPDATE_NOT_AVAILABLE (Int == 1) — no update required
○ UPDATE_AVAILABLE (Int == 2) — update needs to be downloaded or it has

already been downloaded to the user's device.
○ DEVELOPER_TRIGGERED_UPDATE_IN_PROGRESS — update is already

being downloaded or installation is already running.
● installStatus — update installation status, if the user has already started the update

installation at the time:
○ UNKNOWN (Int == 0) — by default;
○ DOWNLOADED (Int == 1) — downloaded;
○ DOWNLOADING (Int == 2) — being downloaded;;
○ FAILED (Int == 3) — error;
○ INSTALLING (Int == 4) — being installed;
○ PENDING (Int == 5) — waiting for download.

An update download can only be triggered if the updateAvailability field contains
UPDATE_AVAILABLE.

554

This method may return an error.

555

Update scenario

Forced update
Availability check
Once AppUpdateInfo is received, you can check whether a push update is available.

registerListener() example

if (appUpdateInfo.isUpdateTypeAllowed(IMMEDIATE)) {

TODO()

}

We recommend that you use the result of isUpdateTypeAllowed to decide whether to run a
forced update. However this result does not affect the script's ability to run. Your internal app
logic determines the necessity to run the update script.
Running the script

startUpdateFlow() example

updateManager

.startUpdateFlow(appUpdateInfo,

AppUpdateOptions.Builder().appUpdateType(IMMEDIATE).build())

.addOnSuccessListener { resultCode ->

}

.addOnFailureListener { throwable ->

}

resultCode (Int) :
● Activity.RESULT_OK (-1) — update completed, the code may not be received as the

app terminates at the time of update.
● Activity.RESULT_CANCELED (0) — flow interrupted by user or an error occurred.

When you receive this code, you are expected to exit the app.
● ActivityResult.ACTIVITY_NOT_FOUND (2) — RuStore is not installed, or an

installed version does not support forced updating (RuStore versionCode < 191)
throwable — error starting update script.

556

Delayed update

Downloading the Update

It is advisable to create a custom interface for managing the update process.

Once you've verified the update's availability, you can initiate the silent update script. The initial
phase involves discreetly downloading the update in the background.

To monitor the download progress, you should employ the registerListener() method to add a
listener.

registerListener() example

updateManager.registerListener { state ->

if (state.installStatus == InstallStatus.DOWNLOADED) {

// Update is ready to install

}

}

The State object describes the current update download status. The object contains:
● installStatus — update installation status if the update is being installed at the moment:

○ DOWNLOADED (1) — successfully downloaded.

○ DOWNLOADING (2) — currently being downloaded.

○ FAILED (3) — error.

○ INSTALLING (4) — currently being installed.

○ PENDING (5) — awaiting update.

○ UNKNOWN (0) — by default.

● bytesDownloaded — number of bytes downloaded.

● totalBytesToDownload — total number of bytes that need to be downloaded.

● installErrorCode — error code during download.

If you no longer need a listener.
To discontinue listener functionality, employ the unregisterListener() method. This method
enables you to remove a listener by providing the previously registered listener as an argument.
unregisterListener() example

557

updateManager.unregisterListener(listener)

To initiate the download of an app update, you need to invoke the startUpdateFlow() method,
passing the AppUpdateInfo obtained from the getAppUpdateInfo() method, while also specifying
the update type as SILENT within AppUpdateOptions.

It's important to note that the AppUpdateInfo object becomes obsolete after a single use.
Therefore, to call the startUpdateFlow() method again, you should obtain a fresh AppUpdateInfo
instance by making another request to the getAppUpdateInfo() method.

startUpdateFlow() example

updateManager

.startUpdateFlow(appUpdateInfo,

AppUpdateOptions.Builder().build())

.addOnSuccessListener { resultCode ->

}

.addOnFailureListener { throwable ->

}

When the onSuccessListener is triggered with a resultCode of Activity.RESULT_OK, a task for
downloading the update will be scheduled.

In this particular situation, either the onSuccessListener with resultCode = Activity.RESULT_OK
or the onFailureListener can be invoked. For a comprehensive list of potential errors, please
refer to the Possible Errors section.

Once the "DOWNLOADED" status is received, you can proceed to invoke the update
installation method within the listener. It is advisable to notify the user that the update is
prepared for installation at this point.

Installing the Update
To start the installation, use the completeUpdate() method.
completeUpdate() example

558

updateManager
.completeUpdate()
.addOnFailureListener { throwable ->

}

The update is carried out through the native android tool. If the update is successfully installed,
the application will be closed.
This method can return an error.

Silent Update
Downloading the Update
Once you've verified the availability of the update, the next step is to commence the deferred
update script. The initial action in this process involves silently downloading the update in the
background. To monitor the download progress effectively, you'll need to employ the
registerListener() method to add a listener.

registerListener() example

updateManager.registerListener { state ->
if (state.installStatus == InstallStatus.DOWNLOADED) {
// Update is ready to install

}
}

The State object describes the current update download status. The object contains:
● installStatus — update installation status if the update is being installed at the moment:

○ DOWNLOADED (1) — successfully downloaded.

○ DOWNLOADING (2) — currently being downloaded.

○ FAILED (3) — error.

○ INSTALLING (4) — currently being installed.

○ PENDING (5) — awaiting update.

○ UNKNOWN (0) — by deafult.

● bytesDownloaded — number of bytes downloaded.

● totalBytesToDownload — total number of bytes that need to be downloaded.

● installErrorCode — error code during download.

If you no longer need a listener, use the unregisterListener() method to remove a listener,
passing a previously registered listener to the method.
unregisterListener() example

559

updateManager.unregisterListener(listener)

To initiate the download of an app update, execute the startUpdateFlow() method while passing
the AppUpdateInfo object acquired from the getAppUpdateInfo() method.

Keep in mind that the AppUpdateInfo object loses its validity after its initial use. To invoke the
startUpdateFlow() method a second time, you must obtain a fresh AppUpdateInfo object using
the getAppUpdateInfo() method.

Here's an example demonstrating the use of the startUpdateFlow() method:

val appUpdateOptions =

AppUpdateOptions.Builder().appUpdateType(SILENT).build()

updateManager

.startUpdateFlow(appUpdateInfo, appUpdateOptions)

.addOnSuccessListener { resultCode ->

}

.addOnFailureListener { throwable ->

}

Upon the user's decision to download the update, the resultCode variable should be set to
Activity.RESULT_OK. Conversely, if the user declines, resultCode should be set to
Activity.RESULT_CANCEL.

Errors may occur during the process, so it's crucial to be aware of potential pitfalls.

Once the "DOWNLOADED" status is received, consider invoking the update installation method
within the listener. It is advisable to inform the user that the update is ready for installation.

To commence the update installation, use the completeUpdate() method.

Here's an example of how to call the completeUpdate() method:

updateManager
.completeUpdate()
.addOnFailureListener { throwable ->

560

}

The update is carried out through the native android tool. If the update is successfully installed,
the application will be closed.
This method can return an error.

561

Possible errors
If onFailure is received, we still do not recommend displaying an error to the user on your own
as it can negatively impact the user experience.

Possible errors during the basic RuStore check.
● RuStoreNotInstalledException() — RuStore is not installed on the user's device;
● RuStoreOutdatedException() — RuStore is installed on the user's device but does not

support application updates;
● RuStoreUserUnauthorizedException() — user is not logged in on the RuStore;
● RuStoreException(message: String) — basic RuStore error which gives rise to all other

errors;
● RuStoreInstallException() — download and installation error.

Download and installation error codes:
● ERROR_UNKNOWN — unknown error;
● ERROR_DOWNLOAD — error while downloading;
● ERROR_BLOCKED — installation is blocked by the system;
● ERROR_INVALID_APK — invalid update APK;
● ERROR_CONFLICT — conflict with the current app version;
● ERROR_STORAGE — insufficient device storage;
● ERROR_INCOMPATIBLE — incompatible with device
● ERROR_APP_NOT_OWNED — application has not been purchased;
● ERROR_INTERNAL_ERROR — internal error;
● ERROR_ABORTED — user refused to install the update;
● ERROR_APK_NOT_FOUND — installation APK was not found;
● ERROR_EXTERNAL_SOURCE_DENIED — update is prohibited. For example, the first

method responses that an update is not available, but the user calls the second method.

RuStore Update SDK Release Notes
SDK version 1.0.1

- Internal update
SDK version 1.0.0

- Internal update
SDK version 0.2.0

- Added flow force updates.
- Enhanced VersionCode Transfer with Long Type Support

SDK version 0.1.2
- Added Silent update functionality.

SDK version 0.1.1
- Fixed the await() method for the Task API.

562

Unreal
RuStore In-app updates plug-in 1.0 manual

General information

The plug-in helps you to keep the up-to-date version of your app on the user's device.

When the users have an up-to-date version of the app, they can have a taste of new features and enjoy
improved performance and bug fixes.

You can use RuStore In-app updates to display the app update process that ensures background download
and update installation with status monitoring. For example, you can remind the user that there is a new
version of your app available and suggest that they update. The user will be able to user your app during
the update download.

User scenario example

Conditions for correct plug-in work

For RuStore In-app updates to work flawlessly, the following requirements must be met:

1. OS Android 7.0 or later.
2. RuStore is installed on the user's device.
3. The RuStoreApp version on the device is up-to-date.
4. The user is authorized in RuStore.
5. The RuStore app is allowed to install apps.

Connecting to project

1. Copy the contents of the “Plugins” folder from the official RuStore repository on gitflic to the
“Plugins” folder of your project. Restart Unreal Engine, in the plug-in list (Edit → Plugins →
Project → Mobile) select “RuStoreAppUpdate” and “RuStoreCore”.

563

https://gitflic.ru/project/rustore/rustore-unreal-engine-appupdate-example

2. In the “YourProject.Build.cs” file of the PublicDependencyModuleNames list connect the
“RuStoreCore” and “RuStoreAppUpdate” modules.

3. In the project settings (Edit → Project Settings → Android) set the Minimum SDK Version
parameter to level 24or later and the Target SDK Version parameter to 31 or later.

Creating update manager

Create update manager before calling library methods.
URuStoreAppUpdateManager::Instance()->Init();

All operations with the manager are also available from Blueprints.

Blueprint implementation:

Important:

1. The Init() call ties the object to the scene root, and, If no further work with the object is needed,
execute the Dispose() method to free memory.

The Dispose() method call will untie the object from root and securely complete all sent requests.

Deinitialization
URuStoreAppUpdateManager::Instance()->Dispose();

Blueprint implementation:

If you need to check whether the library is initialized or not, use
URuStoreBillingClient::Instance()->getIsInitialized(), its value is true if the library is initialized and false
if Init hasn't been called yet.

Initialization check
URuStoreAppUpdateManager::Instance()->getIsInitialized();

Blueprint implementation:

Checking whether there are updates available

Before calling an update, check whether it is available for your app. To check the update availability, first
call the GetAppUpdateInfo() method. When this method is called, the following conditions are checked:

1. RuStore is installed on the user's device.
2. The RuStoreApp version on the device is up-to-date.
3. The user is authorized in RuStore.
4. The user and the app are not banned in RuStore.
5. The RuStore app is allowed to install apps.

In response to this method, you will receive the AppUpdateInfo object that will contain the information
whether it is necessary to update. Request the information in advance to request the user to download
without delay and in a convenient time.

GetAppUpdateInfo() call example
long requestId = GetAppUpdateInfo(

564

[](long requestId, TSharedPtr<FURuStoreAppUpdateInfo,
ESPMode::ThreadSafe> response) {

// Process response
},

[](long requestId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

Blueprint implementation:

The Success callback returns the AppUpdateInfo structure in the Response parameter:

The AppUpdateInfo object contains a set of parameters required to determine whether an update is
available:

● updateAvailability - update availability:
● UPDATE_NOT_AVAILABLE - no need for the update.
● UPDATE_AVAILABLE - the update needs to be downloaded or is already downloaded

to the user's device.
● DEVELOPER_TRIGGERED_UPDATE_IN_PROGRESS - the update is being

downloaded or installed.
● UNKNOWN - the default status.

● installStatus - the update installation status: if the user is in the process of installing the update:
● DOWNLOADED - the update is downloaded.
● DOWNLOADING - the update is being downloaded.
● FAILED - error.
● INSTALLING - the update is being installed.
● PENDING - the update is pending.
● UNKNOWN - the default status.

The update download is only available if the updateAvailability field has the UPDATE_AVAILABLE
value.

The Failure callback returns the FURuStoreError structure that contains the error information in the Error
parameter. All possible errors FURuStoreException are described in the “Error handling” section.

After receiving AppUpdateInfo you can check the availability of the immediate update using the
CheckIsImmediateUpdateAllowed() method.

CheckIsImmediateUpdateAllowed() call example
bool available =
URuStoreAppUpdateManager::Instance()->CheckIsImmediateUpdateAllowed()
;

Blueprint implementation:

Downloading update

To start downloading the app update, call the StartUpdateFlow() method.

There are three update scenarios available:

565

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

EURuStoreAppUpdateOptions::DELAYED - delayed update.

EURuStoreAppUpdateOptions::SILENT - silent update.

EURuStoreAppUpdateOptions::IMMEDIATE - immediate update.

Important! To call the StartUpdateFlow() method again request AppUpdateInfo again using the
GetAppUpdateInfo() method.

StartUpdateFlow() call example
EURuStoreAppUpdateOptions appUpdateOptions =
EURuStoreAppUpdateOptions::DELAYED;
long requestId = StartUpdateFlow(

appUpdateOptions,
[](long requestId, EURuStoreUpdateFlowResult response) {

// Process response
},

[](long requestId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

Blueprint implementation:

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

The Success callback returns the EURuStoreUpdateFlowResult value in the Response parameter:

● EURuStoreUpdateFlowResult::RESULT_OK (-1) - the update is complete; the code may fail to
be sent as the app stops during the update.

● EURuStoreUpdateFlowResult::RESULT_CANCELED (0) - the flow was interrupted by the user
or an error occurred. It is expected, that the app should be stopped on receiving this code.

● EURuStoreUpdateFlowResult::ACTIVITY_NOT_FOUND (2) - RuStore not installed, or the
installed version does not support immediate updates (RuStore versionCode < 191)

After calling the StartUpdateFlow() method you can monitor the download status in the
OnStateUpdatedInstanceEvent event.

OnStateUpdatedInstanceEvent
DECLARE_DYNAMIC_MULTICAST_DELEGATE_TwoParams(FRuStoreOnStateUpdatedIn
stanceDelegate, int64, listenerId, FURuStoreInstallState, state);
UPROPERTY(BlueprintAssignable, Category = "RuStore AppUpdate
Manager")
FRuStoreOnStateUpdatedInstanceDelegate OnStateUpdatedInstanceEvent;

Blueprint implementation:

566

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

On receiving EURuStoreInstallStatus::DOWNLOADED, in the installStatus field, you can call the update
installation method.

Update installation

After downloading the APK update file, you can start the update installation. To start the update
installation call the CompleteUpdate() method.

|CompleteUpdate() call example
requestId = CompleteUpdate(

[](long requestId, TSharedPtr<FURuStoreError,
ESPMode::ThreadSafe> error) {

// Process error
}

);

Blueprint implementation:

The update is done via the native Android tool. If the update is successful, the app will close.

The Failure callback returns the FURuStoreError structure with the error information in the Error
parameter. All possible FURuStoreException errors are described in the “Error handling” section.

Possible errors

We do not recommend display an error to the user if you receive Failure in response. It can negatively
affect the user experience.

Error structure:

Error structure
USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreRuStoreError
{

GENERATED_USTRUCT_BODY()

FURuStoreRuStoreError()
{

name = "";
description = "";

}

UPROPERTY(BlueprintReadOnly)
FString name;

UPROPERTY(BlueprintReadOnly)
FString description;

};

List of possible errors:

● RuStoreNotInstalledException — RuStore is not installed on the user's device.
● RuStoreOutdatedException — the RuStore app installed on the user's device doesn't support

updates.
● RuStoreUserUnauthorizedException — the user is not authorized in RuStore.

567

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal/error-processing

● RuStoreException — base RuStore error from which all other errors are inherited.
● RuStoreInstallException - Download and installation error.

RuStoreInstallException error codes:

● ERROR_UNKNOWN - Unknown error.
● ERROR_DOWNLOAD - Download error.
● ERROR_BLOCKED - Installation blocked by the systems.
● ERROR_INVALID_APK - Invalid update APK.
● ERROR_CONFLICT - There is a conflict with the current app version.
● ERROR_STORAGE - Not enough memory on the device.
● ERROR_INCOMPATIBLE - incompatible with the device.
● ERROR_APP_NOT_OWNED - The app is not purchased.
● ERROR_INTERNAL_ERROR - Internal error.
● ERROR_ABORTED - The user aborted the initialization.
● ERROR_APK_NOT_FOUND - APK for installation not found.
● ERROR_EXTERNAL_SOURCE_DENIED - Installation start denied. For example, the

first request returned response that the update is unavailable, despite that, the user calls
the second method.

● ERROR_ACTIVITY_SEND_INTENT - Error while sending intent for opening an
activity.

● ERROR_ACTIVITY_UNKNOWN - Unknown error on activity opening.

568

Unity
General Information 309
Importing SDK to your project 310
Creating an Update Manager 311
Checking for updates 312
Downloading updates 314
Installing updates 317
Handling errors 318

569

General Information
RuStore In-app updates SDK enable users to be kept up to date with the latest app version on
their device. This allows them to stay informed about any performance enhancements or bug
fixes that have been implemented.

Moreover, the SDK offers the ability to notify users of a new version and provide an option to
install it. The installation process can occur in the background, while the user can track the
progress of the update.

Use case example

Conditions for correct operation of SDK

For RuStore In-app updates SDK to operate correctly, the following conditions need to be met:
1. Android 7.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The user has logged in to the RuStore.
5. The RuStore app is allowed to install applications.

570

Importing SDK to your project

To connect the SDK, you need to download RuStore AppUpdate SDK and import it into the
project. To do this, go to Assets → Import Package → Custom Package). Dependencies are
connected automatically using the External Dependency Manager (included in the SDK).

The minimum API level must be set to at least 24. Application minification (ProGuard/R8) is
currently not supported, it must be disabled in the project settings. Go to File → Build Settings
→ Player Settings → Publishing Settings → Minify.

571

https://cloud.mail.ru/public/AS83/9rEkAJYpu

Creating an Update Manager

Before you start, create an update manager using the Factory method:

RuStoreAppUpdateManager.Instance.Init();

572

Checking for updates

Before requesting an update, check if it is available for your application. To check for updates,
call the getAppUpdateInfo() method. When this method is called, the following conditions will be
verified:

1. The RuStore app is installed on the user's device.
2. The current RuStoreApp version is installed on the user's device.
3. The user has logged in to the RuStore.
4. The user and the app should not be blocked on the RuStore.
5. The RuStore app is allowed to install applications.

Upon calling this method, an AppUpdateInfo object will be returned which contains information
regarding any required updates. It is recommended to request and cache this object in advance,
ensuring a prompt and convenient update download process for the user.

GetAppUpdateInfo() method example

RuStoreAppUpdateManager.Instance.GetAppUpdateInfo(onFailure:
(error) => {

// Handle error
},
onSuccess: (info) => {

// Process update info
});

AppUpdateInfo contains a set of parameters needed to determine whether there is an update
available:

● updateAvailability — update availability::
○ UNKNOWN — default status;
○ UPDATE_NOT_AVAILABLE — no update required
○ UPDATE_AVAILABLE — update needs to be downloaded or it has already been

downloaded to the user's device.
○ DEVELOPER_TRIGGERED_UPDATE_IN_PROGRESS — update is already

being downloaded or installation is already running.
● installStatus — update installation status, if the user has already started the update

installation at the time:
○ DOWNLOADED — downloaded;
○ DOWNLOADING — being downloaded;;
○ FAILED — error;
○ INSTALLING — being installed;
○ PENDING — waiting for download;
○ UNKNOWN — by default;

573

An update download can only be triggered if the updateAvailability field contains
UPDATE_AVAILABLE.

This method may return an error. For detailed information about possible errors, refer to
Handling errors.

574

Downloading updates

Once an update is available, you can request the user to download the update, but before doing
so, you must start the update download status listener using the registerListener() method.

RegisterListener() method example

RuStoreAppUpdateManager.Instance.RegisterListener(listener);

listener — an object that implements an interface IInstallStateUpdateListener.

IInstallStateUpdateListener

public interface IInstallStateUpdateListener {

public void OnStateUpdated(InstallState state);
}

The state object describes the current update download status. The object contains:
● installStatus — update installation status, if the user has already started update

installation at the time:
○ DOWNLOADED — downloaded;
○ DOWNLOADING — being downloaded;
○ FAILED — error;
○ INSTALLING — being installed;
○ PENDING — waiting for download;
○ UNKNOWN — by default.

● bytesDownloaded — number of bytes downloaded.
● totalBytesToDownload — total number of bytes to be downloaded.
● installErrorCode — error code during the download. Possible errors

○ ERROR_UNKNOWN — Unknown error.
○ ERROR_DOWNLOAD — Download error.
○ ERROR_BLOCKED — Installation blocked by the system.
○ ERROR_INVALID_APK — Invalid update APK.
○ ERROR_CONFLICT — Conflict with the current app version.
○ ERROR_STORAGE -— Insufficient storage.
○ ERROR_INCOMPATIBLE — Incompatible with the device.
○ ERROR_APP_NOT_OWNED — App purchase has not been completed.
○ ERROR_INTERNAL_ERROR — Internal error.

575

○ ERROR_ABORTED — Update refused to the user.
○ ERROR_APK_NOT_FOUND — No APK file found.
○ ERROR_EXTERNAL_SOURCE_DENIED — Update prohibited. For example,

the first method responds that an update is not available, but the user calls the
second method.

If the listener is no longer required, then use the unregisterListener() method to
remove the listener, by passing the previously registered listener to the method.

UnregisterListener() method example

RuStoreAppUpdateManager.Instance.UnregisterListener(listener);

Call the startUpdateFlow() method to start downloading an app update.

Once used, an AppUpdateInfo object becomes invalid. To call the startUpdateFlow()
method again, request AppUpdateInfo using the getAppUpdateInfo() method again.

StartUpdateFlow() method example

RuStoreAppUpdateManager.Instance.StartUpdateFlow(
onFailure: (error) => {

// Handle error
},
onSuccess: (resultCode) => {

// Handle flow result
});

If the user confirmed the update download, use resultCode = UpdateFlowResult.RESULT_OK, if
it was refused, then use resultCode = UpdateFlowResult.RESULT_CANCELED.

After calling the method, you can monitor the update download status in Listener. If you
received the DOWNLOADED status in Listener, you can call the update install method. It is
recommended to inform the user when the update is ready for installation.

This method may return an error.

576

577

Installing updates

Once you have downloaded the update APK file, you can start installing the update. To start the
update installation, call the CompleteUpdate() method.

CompleteUpdate() method example

RuStoreAppUpdateManager.Instance.CompleteUpdate(
onFailure: (error) => {

// Handle error
});

The update is processed through the native android tool. If the update is successful, the
application will be closed.

Errors may occur at this step. For more information, refer to Handling errors

578

Handling errors

If onFailure is received, we still do not recommend displaying an error to the user on your own
as it can negatively impact the user experience.

Error structure:

public class RuStoreError {

public string name;
public string description;

}

The list of possible errors:
● RuStoreNotInstalledException — RuStore is not installed on the user's device;
● RuStoreOutdatedException — RuStore is installed on the user's device but does not

support application updates;
● RuStoreUserUnauthorizedException — user is not logged in on the RuStore;
● RuStoreException — basic RuStore error which gives rise to all other errors;
● RuStoreInstallException — download and installation error.

579

Flutter

General Information

RuStore In-app updates SDK enable users to be kept up to date with the latest app version on
their device. This allows them to stay informed about any performance enhancements or bug
fixes that have been implemented.

Additionally, the SDK offers the ability to notify users of a new version and provide an option to
install it. The installation process can occur in the background, while the user can track the
progress of the update.

Use case example

Conditions for correct operation of SDK

For RuStore In-app updates SDK to operate correctly, the following conditions need to be met:
1. Android 6.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The RuStore app is allowed to install applications.

580

Importing SDK to your project

Run the script below to connect the SDK:

flutter pub add flutter_rustore_update

This command adds a line in pubspec.yaml: :

dependencies:
flutter_rustore_update: ^0.0.2

581

Checking for updates

Before requesting an update, check if it is available for your application. To check for updates,
call the info(). When this method is called, the following conditions will be verified:

1. The RuStore app is installed on the user's device.
2. The current RuStoreApp version is installed on the user's device.
3. The user and the app should not be blocked on the RuStore.

Upon calling this method, an Info object will be returned which contains information regarding
any required updates.

RustoreUpdateClient.info().then((info) {
print(info);

}).catchError((err) {
print(err);

});

The updateInfo object contains a set of parameters needed to determine if an update is
available:

● updateAvailability — update availability::
○ UPDATE_AILABILITY_NOT_AVAILABLE — no update required
○ UPDATE_AILABILITY_AVAILABLE — update needs to be downloaded or it has

already been downloaded to the user's device.
○ UPDATE_AILABILITY_IN_PROGRESS — update is already being downloaded

or installation is already running.
○ UPDATE_AILABILITY_UNKNOWN — default status.

● installStatus — update installation status, if the user has already started the update
installation at the time:

○ INSTALL_STATUS_DOWNLOADED — downloaded.
○ INSTALL_STATUS_DOWNLOADING — being downloaded.
○ INSTALL_STATUS_FAILED — error.
○ INSTALL_STATUS_INSTALLING — being installed.
○ INSTALL_STATUS_PENDING — waiting for download.
○ INSTALL_STATUS_UNKNOWN — by default.

An update download can only be triggered if the updateAvailability field contains
UPDATE_AVAILABLE.

This method may return an error.

582

Downloading the Update
Upon confirming the availability of an update, you can prompt the user to initiate the download.
However, prior to proceeding, it's essential to initialize a listener for tracking the download status
of the update using the listener() method.

RustoreUpdateClient.listener((value) {
print("listener installStatus ${value.installStatus}");
print("listener bytesDownloaded ${value.bytesDownloaded}");
print("listener totalBytesToDownload ${value.totalBytesToDownload}");
print("listener installErrorCode ${value.installErrorCode}");

if (value.installStatus == INSTALL_STATUS_DOWNLOADED) {
}

});

The state object describes the current update download status. It contains:
● installStatus — update installation status, if the user has already started the update

installation at the time:
○ INSTALL_STATUS_DOWNLOADED — downloaded.
○ INSTALL_STATUS_DOWNLOADING — being downloaded.
○ INSTALL_STATUS_FAILED — error.
○ INSTALL_STATUS_INSTALLING — being installed.
○ INSTALL_STATUS_PENDING — waiting for download.
○ INSTALL_STATUS_UNKNOWN — by default.

● bytesDownloaded — number of bytes downloaded.

● totalBytesToDownload — total number of bytes that need to be downloaded.

● installErrorCode — error code during download.

Downloading with RuStore UI
To start downloading an application update, call the download() method.

RustoreUpdateClient.download().then((value) {
print("download code ${value.code}");

}).catchError((err) {
print("download err ${err}");

});

When the user confirms the download of the update, the value.code should be set to
ACTIVITY_RESULT_OK. Conversely, if the user declines, the value.code should be set to
ACTIVITY_RESULT_CANCELED.

After invoking the method, you can track the update download status through the listener. If the
listener reports the INSTALL_STATUS_DOWNLOADED status, you can proceed to execute the

583

update installation method. It is advisable to inform the user that the update is ready for
installation.
Forced Update
To start downloading a mandatory app update, call the immediate() method.

RustoreUpdateClient.immediate().then((value) {
print("immediate code ${value.code}");

}).catchError((err) {
print("immediate err ${err}");

});

Once the user confirms the download of the update, set value.code to ACTIVITY_RESULT_OK.
In the event of a refusal, set value.code to ACTIVITY_RESULT_CANCELED.

Subsequent to invoking the method, it's possible to keep track of the update download status
through the listener. If the listener reports the INSTALL_STATUS_DOWNLOADED status, you
should proceed to invoke the update installation method. We strongly recommend notifying the
user that the update is prepared for installation.

Silent update
To start downloading an application update without the RuStore interface, call the silent()
method.

RustoreUpdateClient.silent().then((value) {
print("silent code ${value.code}");

}).catchError((err) {
print("silent err ${err}");

});

Once you've triggered the method, you can actively monitor the update download status via the
listener. If you receive the INSTALL_STATUS_DOWNLOADED status within the listener, you
should proceed to initiate the update installation method. It is advisable to promptly inform the
user that the update is now ready for installation.

584

Installing the Update
Once the update apk file is downloaded, you can start installing the update. To start installing
the update, call the complete() method.

RustoreUpdateClient.complete().catchError((err) {
print("complete err ${err}");

});

The update process is facilitated using the native Android tool. Upon a successful update, the
application will automatically close.

Possible errors

All errors in the plugin are implemented using constants. Description of constants is listed in
const.dart.

If you receive an onFailure response, we do not recommend displaying the error to the user
as it may negatively impact the user experience.

List of possible errors:

●
● UPDATE_ERROR_DOWNLOAD — Error while downloading.
● UPDATE_ERROR_BLOCKED — Installation is blocked by the system.
● UPDATE_ERROR_INVALID_APK — Incorrect APK update.
● UPDATE_ERROR_CONFLICT — Conflict with the current app version.
● UPDATE_ERROR_STORAGE — Not enough device space.
● UPDATE_ERROR_INCOMPATIBLE — Incompatible with the device.
● UPDATE_ERROR_APP_NOT_OWNED — Application has not been purchased.
● UPDATE_ERROR_INTERNAL_ERROR — Internal error.
● UPDATE_ERROR_ABORTED — Update referred by user.
● UPDATE_ERROR_APK_NOT_FOUND — APK not found.
● UPDATE_ERROR_EXTERNAL_SOURCE_DENIED — Running the update is

prohibited. For example, the first method returns a response stating that the update
is not available, but the user calls the second method.

585

RuStore Update SDK Release Notes

SDK version 0.0.3

● Internal update

SDK version 0.0.2

● Internal update

SDK version 0.0.1

● Update functionality implemented

586

587

Unreal

General Information
RuStore In-app updates SDK enable users to be kept up to date with the latest app version on
their device. This allows them to stay informed about any performance enhancements or bug
fixes that have been implemented.

Moreover, the SDK offers the ability to notify users of a new version and provide an option to
install it. The installation process can occur in the background, while the user can track the
progress of the update.

Use case example

Conditions for correct operation of SDK

For RuStore In-app updates SDK to operate correctly, the following conditions need to be met:
1. Android 7.0 or later.
2. The RuStore app is installed on the user's device.
3. The current RuStoreApp version is installed on the user's device.
4. The user has logged in to the RuStore.
5. The RuStore app is allowed to install applications.

588

Importing SDK to your project

To connect the SDK, you need to download the Unreal Engine plugins RuStoreCore and
RuStoreAppUpdate from the official RuStore gitflic repository, then place them in the Plugins
folder inside the project. The RuStoreCore and RuStoreAppUpdate plugins will appear in the list
(Edit → Plugins → Project → Mobile). Once where you need to connect the RuStoreCore and
RuStoreAppUpdate modules in PublicDependencyModuleNames list of the
YourProject.Build.cs file.

When building an Android application, Minimum SDK Version must be set to level no lower than
24, Target SDK Version must be set to no lower than 31. Application minification (ProGuard/R8)
is not currently supported. All necessary gradle settings and project dependencies are specified
in the RuStoreCore_UPL_Android.xml and RuStoreAppUpdate_UPL_Android.xml files.

Creating an Update Manager

Before you start, create an update manager:

URuStoreAppUpdateManager::Instance()->Init();

All manager operations are also accessible via Blueprints. Initialization example:

The Init() call binds the object to the scene root, and if no further work is planned on the
object, the Dispose() method must be called to free up memory.

Calling the Dispose() method will unbind the object from the root and safely complete all
requests sent.

Deinitialization

589

https://gitflic.ru/project/rustore/rustore-unreal-engine-appupdate-example

URuStoreAppUpdateManager::Instance()->Dispose();

If you need to check whether the library has been initialized, use the
URuStoreBillingClient::Instance()->getIsInitialized() property. Its value is true if the library is
initialized, and false if Init has not yet been called.

Initialization check

URuStoreAppUpdateManager::Instance()->getIsInitialized();

590

Checking for updates
Before requesting an update, check if it is available for your application. To check for updates,
call the getAppUpdateInfo() method. When this method is called, the following conditions will be
verified:

1. The RuStore app is installed on the user's device.
2. The current RuStoreApp version is installed on the user's device.
3. The user has logged in to the RuStore.
4. The user and the app should not be blocked on the RuStore.
5. The RuStore app is allowed to install applications.

Upon calling this method, an AppUpdateInfo object will be returned which contains information
regarding any required updates. It is recommended to request and cache this object in advance,
ensuring a prompt and convenient update download process for the user.

GetAppUpdateInfo() method example

long requestId = GetAppUpdateInfo(
[](long requestId, TSharedPtr<FURuStoreAppUpdateInfo,

ESPMode::ThreadSafe> response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

591

To process a response using Blueprints, you must subscribe to
OnGetAppUpdateInfoResponse and OnGetAppUpdateInfoError events.

OnGetAppUpdateInfoResponse event subscription example:

OnGetAppUpdateInfoError event subscription example:

All Blueprint-events in the plugin are broadcast. A given request can be filtered using the
requestId parameter. Each call to the GetAppUpdateInfo() method returns a unique
requestId, Blueprint-event returns the requestId of the method that generated it.

592

AppUpdateInfo contains a set of parameters needed to determine whether there is an update
available:

● updateAvailability — update availability:
○ UNKNOWN — default status;
○ UPDATE_NOT_AVAILABLE — no update required
○ UPDATE_AVAILABLE — update needs to be downloaded or it has already been

downloaded to the user's device.
○ DEVELOPER_TRIGGERED_UPDATE_IN_PROGRESS — update is already

being downloaded or installation is already running.
● installStatus — update installation status, if the user has already started the update

installation at the time:
○ DOWNLOADED — downloaded;
○ DOWNLOADING — being downloaded;;
○ FAILED — error;
○ INSTALLING — currently being installed.
○ PENDING — pending.
○ UNKNOWN — by default.

An update download can only be triggered if the updateAvailability field contains
UPDATE_AVAILABLE.

This method may return an error. For detailed information about possible errors, refer to
Handling errors.

593

Downloading updates

Once an update is available, you can request the user to download the update, but before doing
so, you must start the update download status listener using the registerListener() method.

RegisterListener() method example

URuStoreAppUpdateManager::Instance()->RegisterListener(listener);

listener — an object that implements an interface IInstallStateUpdateListener.

IInstallStateUpdateListener

UINTERFACE(Blueprintable)
class RUSTOREAPPUPDATE_API
URuStoreInstallStateUpdateListenerInterface : public UInterface
{

GENERATED_BODY()
};

class IRuStoreInstallStateUpdateListenerInterface
{

GENERATED_BODY()

public:
UFUNCTION(BlueprintCallable, BlueprintNativeEvent, Category =

"RuStore InstallStateUpdate Listener Interface")
void OnStateUpdated(int64 listenerId, FURuStoreInstallState&

state);
};

The state object describes the current update download status. The object contains:
● installStatus — update installation status, if the user has already started update

installation at the time:
○ DOWNLOADED — downloaded;
○ DOWNLOADING — being downloaded;

594

○ FAILED — error;
○ INSTALLING — being installed;
○ PENDING — waiting for download;
○ UNKNOWN — by default.

● bytesDownloaded — number of bytes downloaded.
● totalBytesToDownload — total number of bytes to be downloaded.
● installErrorCode — error code during the download. Possible errors

○ ERROR_UNKNOWN — Unknown error.
○ ERROR_DOWNLOAD — Download error.
○ ERROR_BLOCKED — Installation blocked by the system.
○ ERROR_INVALID_APK — Invalid update APK.
○ ERROR_CONFLICT — Conflict with the current app version.
○ ERROR_STORAGE -— Insufficient storage.
○ ERROR_INCOMPATIBLE — Incompatible with the device.
○ ERROR_APP_NOT_OWNED — App purchase has not been completed.
○ ERROR_INTERNAL_ERROR — Internal error.
○ ERROR_ABORTED — Update refused to the user.
○ ERROR_APK_NOT_FOUND — No APK file found.
○ ERROR_EXTERNAL_SOURCE_DENIED — Update prohibited. For example,

the first method responds that an update is not available, but the user calls the
second method.

If the listener is no longer required, then use the unregisterListener() method to
remove the listener, by passing the previously registered listener to the method.

UnregisterListener() method example

URuStoreAppUpdateManager::Instance()->UnregisterListener(listener);

Call the startUpdateFlow() method to start downloading an app update.

To call the startUpdateFlow() method again, request AppUpdateInfo using the
getAppUpdateInfo() method again.

StartUpdateFlow() method example

long requestId = StartUpdateFlow(

595

[](long requestId, EURuStoreUpdateFlowResult response) {
// Process response

},
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

596

If the user confirmed the update download, use resultCode = UpdateFlowResult.RESULT_OK, if
it was refused, then use resultCode = UpdateFlowResult.RESULT_CANCELED.

After calling the method, you can monitor the update download status in Listener. If you
received the DOWNLOADED status in Listener, you can call the update install method. It is
recommended to inform the user when the update is ready for installation.

This method may return an error.

Installing updates

Once you have downloaded the update APK file, you can start installing the update. To start the
update installation, call the CompleteUpdate() method.

CompleteUpdate() method example

requestId = CompleteUpdate(
[](long requestId, TSharedPtr<FURuStoreError,

ESPMode::ThreadSafe> error) {
// Process error

}
);

597

The update is processed through the native android tool. If the update is successful, the
application will be closed.

Errors may occur at this step. For more information, refer to Handling errors

Handling errors

If onFailure is received, we still do not recommend displaying an error to the user on your own
as it can negatively impact the user experience.

Error structure:

USTRUCT(BlueprintType)
struct RUSTORECORE_API FURuStoreRuStoreError
{

GENERATED_USTRUCT_BODY()

FURuStoreRuStoreError()

598

{
name = "";
description = "";

}

UPROPERTY(BlueprintReadOnly)
FString name;

UPROPERTY(BlueprintReadOnly)
FString description;

};

The list of possible errors:
● RuStoreNotInstalledException — RuStore is not installed on the user's device;
● RuStoreOutdatedException — RuStore is installed on the user's device but does not

support application updates;
● RuStoreUserUnauthorizedException — user is not logged in on the RuStore;
● RuStoreException — basic RuStore error which gives rise to all other errors;
● RuStoreInstallException — download and installation error.

599

List of App Update Dependencies

● ru.rustore.sdk:core:0.1.10 — GNU Lesser General Public License v3.0;
● ru.rustore.sdk:analytics:0.1.5 — GNU Lesser General Public License v3.0;
● org.jetbrains.kotlin:kotlin-stdlib-jdk8:1.7.20 — The Apache Software License, Version

2.0;
● org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.4 — The Apache Software

License, Version 2.0;
● androidx.core:core-ktx:1.9.0 — The Apache Software License, Version 2.0;
● androidx.appcompat:appcompat:1.5.1 — The Apache Software License, Version 2.0;
● androidx.activity:activity:1.5.1 — The Apache Software License, Version 2.0.

List of available SDK

Platform In-App Purchases
SDK

Push
Notifications
SDK

General Push
Notifications
SDK

App Feedback
and Rating SDK App Update SDK

Kotlin
Documentation

Example

Documentation

Example

Documentation

Example

Documentation

Example

Documentation

Example

Java
Documentation

Example

Documentation

Example

Documentation
Example

Documentation

Example

Documentation
Example

Unity
Documents

Example Documentation
Documentation Documentation

Flutter
Documentation

Example

Documentation

Example

Documentation

Example

Documentation
Example

600

https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://gitflic.ru/project/rustore/rustore-sdk-push-example
https://gitflic.ru/project/rustore/rustore-sdk-universal-push-example
https://gitflic.ru/project/rustore/rustore-sdk-review-example
https://gitflic.ru/project/rustore/rustore-sdk-update-example
https://gitflic.ru/project/rustore/rustore-sdk-billing-example
https://gitflic.ru/project/rustore/rustore-sdk-push-example
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_general_push-notifications/kotlin
https://gitflic.ru/project/rustore/rustore-sdk-universal-push-example
https://gitflic.ru/project/rustore/rustore-sdk-review-example
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_updates/sdk_updates_kotlin
https://gitflic.ru/project/rustore/rustore-sdk-update-example
https://gitflic.ru/project/rustore/unity-rustore-sdk-billing-example
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_push-notifications/unity
https://gitflic.ru/project/rustore/flutter-rustore-billing/file?file=example&branch=master
https://gitflic.ru/project/rustore/flutter-rustore-push/file?file=example&branch=master
https://gitflic.ru/project/rustore/flutter-rustore-review/file?file=example&branch=master
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_updates/flutter
https://gitflic.ru/project/rustore/flutter-rustore-update/file?file=example&branch=master

Unreal Engine Documentation
Example

Godot Documentation
Example

React Native Documentation
Example

Compatible SDK versions
You should use compatible SDK versions only.

RuStore
Billing SDK

App Feedback and
Rating SDK

App Update SDK Push notifications SDK

3.0.0 1.0.0 1.0.0 1.0.0

4.0.0 2.0.0 2.0.0 2.0.0

When using one of the above versions, version of other used SDK must comply to the table
(must not be lower)

RuStore Geo

RuStore Geo provides cartographic products and high-load services on the basis of
OpenStreetMap open data.

601

https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/unreal
https://gitflic.ru/project/rustore/rustore-unreal-engine-billing-example
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/godot
https://gitflic.ru/project/rustore/godot-rustore-billing/file?file=example&branch=master
https://help.rustore.ru/rustore/for_developers/developer-documentation/sdk_payments/ReactNative
https://gitflic.ru/project/rustore/react-native-rustore-billing-sdk/file?file=example&branch=master

Terms of Use of RuStore Geo Functionality on the RuStore

The following Terms of Use of RuStore Geo functionality on the RuStore (the “Terms”) set forth
general terms and conditions of your (hereinafter — “You” or “Developer”) use of RuStore Geo
services and functionality, including software for mobile or other platforms which may be
provided by VK LLC (the “Company”), tools and any other RuStore Geo applications, services,
software, components, and functions provided by the Company (hereinafter collectively referred
to as “RuStore Geo”).

Enabling and using RuStore Geo functionality, You expressly agree to these Terms.

1. The Company operates RuStore Geo on the basis of OpenStreetMap open license. Terms of
use of OpenStreetMap license are available at http://www.openstreetmap.org/copyright/en.

2. The Company does not make decisions concerning status of a territory (names of locations,
borders, other features) on maps in OpenStreetMap database, and if the User has any
questions regarding the status of any territory, relevant information is available via this link:
https://wiki.osmfoundation.org/w/images/d/d8/DisputedTerritoriesInformation.pdf.

3. The Company hereby grants the Developer access to the use of software (including any
mobile applications) provided to You by the Company (the “Software”) on the basis of these
Terms.

4. The Company hereby represents and warrants that services of provision of access to
RuStore Geo are provided 24 hours per day, seven days per week (24/7), with availability rate
of not less than 99.9%.

5. The Company reserves the right to interrupt operation of RuStore Geo for necessary routine
maintenance, including on business days. Such maintenance breaks shall not be considered
interruptions of services and/or availability of RuStore Geo.

6. The Company shall not be responsible for unavailability of RuStore Geo if it is due to: 1) a
breach of these Terms by the Developer; 2) any other Developer’s acts; 3) force majeure; 4)
suspension of RuStore Geo operation requested by a governmental or municipal authority when
and as provided for by applicable legislation of the Russian Federation.

7. RuStore Geo technical support is provided on the basis of a message/request sent by the
Developer to RuStore Support.

8. The Company and its licensors own all intellectual property with regard to RuStore Geo and
Company’s proprietary databases, including, but not limited to, RuStore Geo components and
algorithms, and also access to RuStore Geo server complex, except for the intellectual property
made available to the Company under OpenStreetMap license.

9. The Developer shall not have the right to modify, publish, transfer, display, participate in the
transfer or sale of, create derivative works from or otherwise use the content of RuStore Geo or

602

http://www.openstreetmap.org/copyright/en
https://wiki.osmfoundation.org/w/images/d/d8/DisputedTerritoriesInformation.pdf

any part thereof. Unless copyright law expressly provides otherwise, the Developer may not
copy, disseminate, publish, display or use for commercial purposes any materials which are the
property of the Company without express consent of the Company.

10. These Terms do not operate to give the Developer, whether directly or indirectly, any right to
use any trademark, service mark, name or logo of the Company, except where the Developer
places and uses RuStore Geo or a part of its functionality inside its Product, in which case the
logo of the Company/RuStore Geo, information about the owner of RuStore Geo and
https://www.rustore.ru link shall be always required to be added.

11. The Developer agrees and acknowledges that the sole purpose of placement of Developer’s
content by the Company is to enable the Developer to use RuStore Geo, and hereby grants the
Company a non-exclusive, worldwide, royalty-free, fully paid, transferable, assignable and
capable of sub-licensing right and license to use, copy, cache, publish, display, disseminate,
alter, create derivative works from and store Developer’s content within RuStore Geo. This right
and license shall allow the Company to place and copy Developer’s content exclusively within
RuStore Geo functionality. The User hereby represents, acknowledges and agrees that they
have the right to grant the above rights to the Company.

12. Except for Developer’s own content, all the content displayed on RuStore Geo or available
through RuStore Geo, including text, images, maps, software or source code, shall be and
remain property of the Company or third parties and shall be protected by provisions of
applicable law of the Russian Federation and international intellectual property laws. Logos and
product names appearing on RuStore Geo or in relation therewith shall be and remain property
of the Company or our licensors. The Developer may not delete any property right notices or
identification labels of products from RuStore Geo.

13. Unless the Company provides information which is accessed by the Developer using
RuStore Geo functionality, such information is provided, input or published by other developers
and is neither controlled nor verified nor confirmed by the Company in any case. The Company
has the right, but is at no obligation, to verify and track the content placed via RuStore Geo
functionality, and to determine whether it conforms to these Terms and any other rules of
RuStore Service which the Company may introduce from time to time. With regard to user
content/information, though it does not control such content/information, the Company may use
certain automatic computer systems and filters for scanning such content/messages to limit
spam or other undesirable content which may be sent via RuStore Geo functionality. Such
content/messages shall be sole responsibility of the posters or senders thereof.

14. RuStore Geo functionality is provided by the Company and operates “as is” and with no
guarantees, whether express or implied, including, but not limited to any implied guarantee of
commercial value or fitness for any specific use.

15. The Company does not guarantee that RuStore Geo and its functional capabilities will be
sail-safe or error-free, or that defects of RuStore Geo operation will be corrected.
16. The Company gives no guarantee and makes no statement as to the use or results of the
use of the services or any third party websites referred to on RuStore Geo with regard to the
correctness, accuracy, reliability or any other property thereof.

603

https://www.rustore.ru/

17. If RuStore Geo functionality is used in a Developer’s Product for the travel of or for driving
any vehicle, such use of RuStore Geo shall be exclusively at the user’s own risk. The
information being provided on RuStore Geo is not intended to replace road information (for
example, provided by traffic lights, road signs or traffic police officers), and when such road
information differs from the information provided on RuStore Geo, the user shall not rely on
RuStore Geo data. The User shall abide by any and all laws and road traffic rules when using
RuStore Geo.

18. The Developer shall be solely responsible and liable to third parties for Developer’s actions
related with the use of RuStore Geo functionality, including when such actions lead to
infringement of rights and legitimate interests of third parties, and shall always comply with the
law when using RuStore Geo.

19. When using RuStore Geo functionality, the Developer shall not have the right to:
a. upload, send, transmit or otherwise place and/or disseminate content which is illegal,

harmful, slanderous, injures morality, demonstrates (or promotes) violence and cruelty,
infringes intellectual property rights, encourages hate and/or discrimination on grounds
of race, ethnicity, sex, religion or social status, contains insults against any person or
entity, contains elements of (or promotes) pornography, child porn, is an advertisement
of (or promotes) sexual services (including under the guise of other services), explains
how to make, utilize or otherwise use narcotic substances or equivalents thereof,
explosives or other weapons;

b. infringe rights of third parties, including young persons, and/or cause them harm in any
form;

c. pretend to be another person or act as a representative of an organization and/or a
community without having sufficient rights to, including as an employee of the Company,
as a message board moderator, as a website owner, and also use any other form or
method of illegal representation of others on the Web, and also confuse users or the
Company regarding properties and characteristics of any subject or object;

d. upload, send, transmit or otherwise place and/or disseminate content without having
rights to according to any law or contract;

e. upload, send, transmit or otherwise place and/or disseminate any information of an
advertisement nature that is not expressly authorized, spam (including search spam),
lists or others’ e-mail addresses, plans of “pyramids schemes”, multi-level (network)
marketing (MLM), Internet earning systems and e-mail businesses, chain e-mails, and
also use Company’s services to engage in such activities, or use Company’s services
solely to redirect users to pages of other domains;

f. upload, send, transmit or otherwise place and/or disseminate any materials containing
viruses or other computer codes, files or programs intended for disrupt, destroy or limit
functionality of any computer or telecommunication equipment or programs, or to have
unauthorized access, and also serial numbers for commercial software products and
tools for generation thereof, logins, passwords and other means for obtaining
unauthorized access to paid Internet resources, and also place links to any of the above
information;

g. collect and store others’ personal data without being authorized to;
h. disrupt normal operation of websites, RuStore service and RuStore Geo functionality;
i. assist any action aimed at breach of any limitations and restrictions imposed by these

Terms;

604

j. otherwise infringe provisions of legislation of the Russian Federation, including
provisions of international law.

20. The Developer shall not have the right to temporarily store (cache) any results of operation
of RuStore Geo and/or information obtained from RuStore Geo, and also to alter the contents of
results of queries sent to RuStore Geo provided to the Developer in response to a query.

21. The Developer shall always display all the attribution information the Company provides to
the Developer for using RuStore Geo functionality (including branding, logos, and also copyright
and trademark notices).

22. The Company may modify these Terms from time to time, including by way of posting a new
revision of amended Terms at:
https://help.rustore.ru/rustore/for_developers/developer-documentation/RuStore_Geo, and it
shall be Developer’s sole responsibility to check the Terms for any changes. Amendments to the
Terms made by the Company shall come into effect on the day immediately following the day of
publishing the new revision of the Terms on the above website. Continued use of RuStore Geo
functionality after amendment of the Terms shall constitute Developer’s acceptance of and
agreement with such amendments. If the Developer disagrees with any amendments to the
Terms, the Developer shall cease to use (disable) RuStore Geo functionality.

23. The Developer shall have the right to use e-mail address support@rustore.ru for all matters
related with these Terms.

Revision of December 20, 2022

605

General

You need to use an access key to access RuStore Geo products.

Supported languages

We are committed to creating fully functional maps of the whole world with maximum support for
languages expected by our clients. Availability of a particular language depends on a
geographic region. Main supported languages are Russian, English, and region’s local
language.

Request rate limitation

By default, all access keys have the same RPS limitation. You can increase or decrease the
request rate for a specific key when necessary. To increase the request rate, you need to
contact your client account manager at RuStore Geo.

Standard limitation of service call rate: 10 RPS (10 SPS for map display, and 10 EPS for
distance matrix calculation and traveling salesman problem resolution services).

606

https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/general_information/access_services

Access to services

To use RuStore Geo products you should use a valid access key which provides positive
identification of the client. The access key is used in your web products and mobile products
when geoservices are called, and it is also used for tracing calls to RuStore Geo products which
are related with your project.

All RuStore Geo products are available at https://geo.rustore.ru/. To access the desired service,
specify its version, name, your access key and request body in the address.

Service requests should be made as follows:

https://geo.rustore.ru/api/[endpoint]?[api_key]&[query]

● endpoint — service call point;
● query — request body with parameters;
● api_key — your access key.

To get access key:
1. Open RuStore Console.
2. Go to “Applications” tab.
3. Select an application.
4. Find “Maps and geoservices” section.
5. Click “Create a token”.

Only one key for using maps can be requested per one application.

607

https://geo.rustore.ru/%D1%8E
https://geo.rustore.ru/api/%5Bendpoint%5D?%5Bapi_key%5D&%5Bquery
https://console.rustore.ru/sign-in

A key with validity period will be displayed. You can copy and paste it to your application. Click

.

Key renewal occurs automatically when an app update is released. Key’s validity is
limited to 90 calendar days.

Validity period and limitations applicable to a key are provided for by Software Products
Distribution Agreement.

If you have a problem with a key, please contact us. We will do our best to resolve the problem.

608

https://help.rustore.ru/rustore/legal_info_en/non-resident_developers_agreement
https://help.rustore.ru/rustore/legal_info_en/non-resident_developers_agreement
mailto:support@rustore.ru

Search and geocoding services

Search for Places of Interest

Search for Places of Interest allows you to search for nearby landmarks and find out more
about them.

/places — service call point which is used to search for places of interest and get more
information about them.

Request

Required request parameters

Field
name

Format Description Example

api_key hex-string See “Access to services”
api_key=fa749bace6d8a3b1..
..

q string Request body. Use one of the below
search options:

● positioning data in lat,lon,
where:

○ lat — latitude of the
desired point in degrees
(6 decimal places are
used);

○ lon — longitude of the
desired point in degrees
(6 decimal places are
used);

● text string (may contain the
desired place name or
address).

q=rustore.ru
q=subway
q=55.797041,37.537830

Extra request parameters

Field
name

Format Description Example

609

fields fieldname1,fieldna
me2,....fieldnameN

Select fields that will be
passed in a response.

Possible values:
● name (default) —

name of a place of
interest;

● place_details —
details on a place of
interest (currently
unavailable);

● address_details
(default) — details
of a discovered
address (Postal
code included)
without positioning
data;

● address —
single-line address
of a place of
interest;

● pin (default) —
positioning data
(latitude and
longitude);

● bbox — place
location area;

● geometry —
boundaries of a
place;

● type — object type.

fields=pin,bbox,name

610

types string Currently unavailable.

Searchable object types.

By default, the search is
performed on all types of
places of interest.

The guide is constantly
updated. Refer to the
/v3/places/types service to
get a complete and
up-to-date type reference

types=hotel,metro

lang 2 character
language code

Response language in one
of the available languages.

The language of the object
region is used by default.

lang=en

location string Relative search coordinate.

Positioning data in lat,lon,
where:

● lat — latitude of the
desired point in
degrees (6 decimal
places are used);

● lon — longitude of
the desired point in
degrees (6 decimal
places are used);

The search results will be
sorted by distance from the
specified coordinate.

location=55.796743,37.5373
54

611

radius integer Search radius in meters
relative to the location
parameter.

The location parameter is
required when using the
radius parameter.

Please note that the object
search may fail if it is
performed within a small
radius.

radius=500

limit integer Limited object number in a
response. The number
should be from 1 to 100.

By default: 5

Large values may cause
longer response time.

limit=10

isocode 2char 2-character code according
to ISO 3166-1 alpha-2 isocode=RU

Response

The response should answer the request and be provided in JSON.

JSON format

612

Field name Format Description Example

request string Request
"request":
"/v3/places?location=55.7967432,37.5373542&a
pi_key=internal_&q=prime&fields=name,place_d
etails,address,address_details,pin,bbox,geom
etry,type"

results list Discovered
result "results": [

{
"address": "Russia, Moscow, Northern

Administrative District, Moscow, Airport
district, Leningradsky Prospekt, 72 apt4",

"address_details": {
"building": "72 apt4",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Airport district"

},
"bbox": null,
"geometry": {
"coordinates": [
37.519963,
55.805396

],
"type": "Point"

},
"name": "Prime",
"pin": [
37.519963,
55.805396

],
"type": "food/cafe"

}
]

}

613

address string Full object
address "address": "Russia, Moscow, Northern

Administrative District, Moscow,
Khoroshevsky, Leningradsky Prospekt, 39 b14"

address_det
ails

list Detailed object
address "address_details": {

"building": "39 с80",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"postal_code": "125167",
"region": "Moscow",
"street": "Leningradsky Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

}

pin list Object
coordinates
(latitude and
longitude)

"pin": [
37.538851,
55.796731

]

bbox list Object location
boundaries for
map
positioning

"bbox": [
37.538253,
55.796405,
37.539368,
55.79694

]

geometry list Object
geometry "geometry": {

"coordinates": [
44.795525,
41.775552

],
"type": "Point"

}

614

name string Object name
"name": "Airport subway"

type string Object type
"type": "public_transport/station_train"

address_details fields description

Field name Format Description Example

country string Country
"country": "Russia"

isocode 2char 2-character code
according to ISO 3166-1
alpha-2

"isocode": "RU"

region string Region
"region": "Moscow"

subregion string Subregion
"subregion": "Northern
Administrative District"

locality string Locality
"locality": "Moscow"

sublocality string Sublocality or community
"sublocality": "Airport"

street string Street
"street": "Leningradsky
Prospekt"

building string House, building
"building": "39 bld 80"

615

suburb string Suburb/neighborhood
"suburb": "Khoroshevsky"

postal_code string Postal code
"postal_code": "125167"

616

geometry field description

Field
name

Format Description Example

type string Geometry type:
● Point — point;
● MultiPoint —

multiple points;
● Linestring — line;
● MultiLineString —

multiple lines;
● Polygon —

polygon;
● MultiPoligon —

multiple polygons.

"type": "Polygon"

coordinat
es

list Point array (longitude and
latitude) that describe the
object geometry

"coordinates": [
[100.0, 0.0], [101.0, 0.0],
[101.0, 1.0], [100.0, 1.0],
[100.0, 0.0]

]

Example

Request

https://geo.rustore.ru/api/places?api_key=<YOUR_API_KEY>&q=prime&fi
elds=name,place_details,address,address_details,pin,bbox,geometry,t
ype&location=55.7967432,37.5373542&limit=1

617

Geocoding service

Geocoder — service that provides direct and reverse geocoding.

Direct geocoding — process of converting addresses into geographic coordinates (latitude and
longitude) that can be used to locate markers on a map or to locate a map on a display.

Reverse geocoding — process of converting geographic coordinates (latitude and longitude) to
an address or part of an address (country, city, region, etc.).

All geocoding services are available throughout the world in all the supported languages.

/search — single direct or reverse geocoding point.

Request

Required request parameters

Field name Format Description Example

api_key hex-string See “Access to services”
api_key=fa749bace6d8a3b1....

q string Search request body.

For reverse geocoding lat and
lon coordinates are used,
where:

● lat — latitude of the
desired point in degrees
(6 decimal places are
used);

● lon — longitude of the
desired point in degrees
(6 decimal places are
used).

A text string is used for direct
geocoding.

q=Moscow Leningradsky 39b80
q=Munich
q=Austria
q=55.7967432,37.5373542

618

General request parameters

Field name Format Description Example

lang 2-character
language code

Response language in one
of the available languages.

The language of the object
region is used by default.

lang=en

limit unsigned
integer

Limited object number in a
response. The number
should be from 1 to 100.

By default: 5

limit=10

fields fieldname1,field
name2,....fieldn
ameN

Select fields that will be
passed in a response.

Possible values:
● address_details

(default) — details
of a discovered
address (Postal
code included)
without positioning
data;

● address —
single-line address;

● pin (default) —
object positioning
data (latitude and
longitude);

● bbox — object
location;

● geometry — object
boundaries;

● type — object
type.

fields=geometry,address_de
tails

619

admin_level admin level Admin level response
limitations.

Possible values:
● 1 — country;
● 2 — region;
● 3 — locality;
● 4 — street;
● 5 — house.

The default value is not
set. The search will be
performed at all admin
levels.

admim_level=2

Extra request parameters for direct geocoding

Field
name

Format Description Example

location string Relative search coordinate.

Positioning data in lat, lon, where:
● lat — latitude of the desired

point in degrees (6 decimal
places are used);

● lon — longitude of the
desired point in degrees (6
decimal places are used);

The search results will be sorted by
distance from the specified
coordinate.

location=55.7967432,37.53
73542

isocode 2char 2-character code according to ISO
3166-1 alpha-2 isocode=RU

620

Extra request parameters for reverse geocoding

Field
name

Format Description Example

radius integer Search radius in meters relative to the location
parameter.

Please note that the object search may fail if it is
performed within a small radius.

radius=300

Response

The response should answer the request and be provided in JSON which was designed
specially for Geocoder v.3.

JSON format

Field
name

Format Description Example

request string Request
"request":
"/v3/search?api_key=demo_demo_main&limit
=1&q=55.796668,37.538871&fields=address_
details,address,pin,bbox,geometry,type",

621

results list Discovered
result "results": [

{
"address": "Russia, Moscow,

Northern Administrative District,
Moscow, Khoroshevsky, Leningradsky
Prospekt, 39 b14",

"address_details": {
"building": "39 b14",
"country": "Russia",
"postal_code": "125167",
"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky

Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

},
"bbox": [
37.538253,
55.796405,
37.539368,
55.79694

],
"geometry": {
"coordinates": [
[
[
37.538253,
55.796822

],
[
37.539204,
55.796405

],
[
37.539368,
55.796523

],
[
37.539105,
55.796639

],
[
37.539082,

622

55.796674
],
[
37.539052,
55.796705

],
[
37.53901,
55.796737

],
[
37.538958,
55.796763

],
[
37.538899,
55.796784

],
[
37.538835,
55.796801

],
[
37.538772,
55.796808

],
[
37.538714,
55.79681

],
[
37.538416,
55.79694

],
[
37.538253,
55.796822

]
]

],
"type": "Polygon"

},
"pin": [
37.538851,
55.796731

],
"type": "building"

623

}
]

address string Full address
"address": "Russia, Moscow, Northern
Administrative District, Moscow,
Khoroshevsky, Leningradsky Prospekt, 39
b14",

address
_details

list Detailed address
info "address_details": {

"building": "39 b80",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"postal_code": "125167",
"region": "Moscow",
"street": "Leningradsky

Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

}

pin list Object
coordinates
(latitude and
longitude)

"pin": [
37.538851,
55.796731

]

bbox list Object
boundaries for
map positioning

"bbox": [
37.538253,
55.796405,
37.539368,
55.79694

]

624

geometr
y

list Object geometry
"geometry": {

"coordinates": [
[
[
37.538253,
55.796822

],
[
37.539204,
55.796405

],
[
37.539368,
55.796523

],
[
37.539105,
55.796639

],
[
37.539082,
55.796674

],
[
37.539052,
55.796705

],
[
37.53901,
55.796737

],
[
37.538958,
55.796763

],
[
37.538899,
55.796784

],
[
37.538835,
55.796801

],
[
37.538772,
55.796808

625

],
[
37.538714,
55.79681

],
[
37.538416,
55.79694

],
[
37.538253,
55.796822

]
]

],
"type": "Polygon"

}

type string Object type
"type": "building"

address_details fields description

Field name Forma
t

Description Example

country string Country
"country": "Russia"

isocode 2char 2-character code according
to ISO 3166-1 alpha-2 "isocode": "RU"

region string Region
"region": "Moscow"

subregion string Subregion
"subregion": "Northern
Administrative District"

locality string Locality
"locality": "Moscow"

626

sublocality string Sublocality or community
"sublocality": "Airport"

street string Street
"street": "Leningradsky
Prospekt"

building string House, building
"building": "39 b80"

suburb string Suburb/neighborhood
"suburb": "Khoroshevsky"

postal_code string Postal code
"postal_code": "125167"

geometry fields description

Field name Format Description Example

type string Geometry type:
● Point — point;
● MultiPoint — multiple

points;
● Linestring — line;
● MultiLineString —

multiple lines;
● Polygon — polygon;
● MultiPoligon —

multiple polygons.

"type": "Polygon"

coordinates list Point array (longitude and
latitude) that describe the
object geometry

"coordinates": [
[100.0, 0.0], [101.0,

0.0],
[101.0, 1.0], [100.0,

1.0],
[100.0, 0.0]

]

627

In case of zero request result, the response will show the following:

{
"results": [],
"request": "/v3/search?limit=1&q=ascec"

}

Example

Direct geocoding

Request

https://geo.rustore.ru/api/search?api_key=<YOUR_API_KEY>q=Moscow%20Len
ingradsky%2039%20с14&fields=address_details,address,pin,bbox,geometry,
type&limit=1

Response

{

"request": "/search?api_key=demo_demo_main&limit=1&q=Moscow
Leningradsky 39
с14&fields=address_details,address,pin,bbox,geometry,type",

"results": [

{

"address": "Russia, Moscow, Northern Administrative District,
Moscow, Khoroshevsky, Leningradsky Prospekt, 39 b14",

"address_details": {

"building": "39 с14",

"country": "Russia",

"postal_code": "125167",

628

"isocode": "RU",

"locality": "Moscow",

"region": "Moscow",

"street": "Leningradsky Prospekt",

"subregion": "Northern Administrative District",

"suburb": "Khoroshevsky"

},

"bbox": [

37.538253,

55.796405,

37.539368,

55.79694

],

"geometry": {

"coordinates": [

[

[

37.538253,

55.796822

],

[

629

37.539204,

55.796405

],

[

37.539368,

55.796523

],

[

37.539105,

55.796639

],

[

37.539082,

55.796674

],

[

37.539052,

55.796705

],

[

630

37.53901,

55.796737

],

[

37.538958,

55.796763

],

[

37.538899,

55.796784

],

[

37.538835,

55.796801

],

[

37.538772,

55.796808

],

[

37.538714,

631

55.79681

],

[

37.538416,

55.79694

],

[

37.538253,

55.796822

]

]

],

"type": "Polygon"

},

"pin": [

37.538851,

55.796731

],

"type": "building"

}

632

]

}

Reverse geocoding

Request

https://geo.rustore.ru/api/search?api_key=<YOUR_API_KEY>q=55.796668,37
.538871&fields=address_details,address,pin,bbox,geometry,type&limit=1

Response

{
"request":

"/v3/search?api_key=demo_demo_main&limit=1&q=55.796668,37.538871&field
s=address_details,address,pin,bbox,geometry,type",
"results": [
{
"address": "Russia, Moscow, Northern Administrative District,

Moscow, Khoroshevsky, Leningradsky Prospekt, 39 b14",
"address_details": {
"building": "39 b14",
"country": "Russia",

"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky Prospekt",
"subregion": "Northern Administrative District",
"suburb": "Khoroshevsky"

},
"bbox": [
37.538253,
55.796405,
37.539368,
55.79694

],
"geometry": {
"coordinates": [
[

633

[
37.538253,
55.796822

],
[
37.539204,
55.796405

],
[
37.539368,
55.796523

],
[
37.539105,
55.796639

],
[
37.539082,
55.796674

],
[
37.539052,
55.796705

],
[
37.53901,
55.796737

],
[
37.538958,
55.796763

],
[
37.538899,
55.796784

],
[
37.538835,
55.796801

],
[

634

37.538772,
55.796808

],
[
37.538714,
55.79681

],
[
37.538416,
55.79694

],
[
37.538253,
55.796822

]
]

],
"type": "Polygon"

},
"pin": [
37.538851,
55.796731

],
"type": "building"

}
]

}

635

Address and Place Autocomplete

Prompter — service that offers suggestions to auto complete addresses and/or places when
entering character by character in the search bar.

/suggest — call point of the address and place autocomplete when entering character by
character.

Request

Request request parameters

Field
name

Format Description Example

api_key hex-string See “Access to
services” api_key=fa749bace6d8a3b1....

q string Search request
body q=Russia Moscow

q=Moscow Leningradsky
q=Moscow Leningradsky Prospekt
q=Moscow Leninsky д. 1
q=subway Airp

636

Extra request parameters

Field name Format Description Example

fields fieldname1,fieldn
ame2,....
fieldnameN

Select fields that will be
passed in a response.

Possible values:
● name (default) —

object name;
● address_details

— address details
(Postal code
included) without
coordinates;

● address (default)
— single-line
address;

● ref — object ID;
● type (default) —

object type.

fields=name

types string Search is performed by the
following object type:

● address (default)
— address;

● place — place
name.

type=address,place

lang 2-character
language code

Response language in one
of available languages.

The language of the object
region is used by default.

lang=en

637

location string Relative search coordinate.

Positioning data in lat,lon,
where:

● lat — latitude of the
desired point in
degrees (6 decimal
places are used);

● lon — longitude of
the desired point in
degrees (6 decimal
places are used);

The search results will
be sorted by distance
from the specified
coordinate.

location=55.796743,37.53
7354

radius integer Search radius in meters
relative to the location
parameter.

The location parameter is
required when using the
radius parameter.

Please note that the object
search may fail if it is
performed within a small
radius.

radius=500

admin_level rank number Admin level response
limitations. To be used with
types=address.

Possible values:
● 1 — country;
● 2 — region;
● 3 — locality;
● 4 — street;
● 5 — house.

The default value is not
set. The search will be
performed at all admin
levels.

admin_level=3

638

limit integer Limited object number in a
response. The number
should be from 1 to 100.

By default: 5

Large values may cause
longer response time.

limit=10

Response

The response should answer the request and be provided in JSON which was designed
specially for Autocomplete v.3.

JSON format

Field name Format Description Example

request string Request
"request":
"/v3/suggest?limit=3&q=Moscow
Leningradsky
39&fields=name,address_details,add
ress,ref,type"

results list Result
"results": [

{
"address": "Russia, Moscow,

Northern Administrative District,
Moscow, Khoroshevsky, Leningradsky
Prospekt, 39 с79",

"address_details": {
"building": "39 с79",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky

Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

},
"ref": "1000000C4D63818",
"type": "building"

639

"name": "Leningradsky
Prospekt, 39 b79",

}
]

address string Full address
"address": "Russia, Moscow,
Northern Administrative District,
Moscow, Khoroshevsky, Leningradsky
Prospekt, 39 b79",

address_details list Detailed address
info "address_details": {

"building": "39 b79",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky

Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

}

ref hex Object ID

Object ID is not
fixed and can be
changed from time
to time

"ref": "1000000C4D63818"

type string Object type
"type": "building"

name string Object name
"name": "Leningradsky Prospekt, 39
b79"

address_details fields description

Field name Format Description Example

640

country string Country
"country": "Russia"

isocode 2char 2-character code
according to ISO 3166-1
alpha-2

"isocode": "RU"

region string Region
"region": "Moscow"

subregion string Subregion
"subregion": "Northern
Administrative District"

locality string Locality
"locality": "Moscow"

sublocality string Sublocality or
community "sublocality": "Airport"

street string Street
"street": "Leningradsky"

building string House, building
"building": "39 b80"

suburb string Suburb/neighborhood
"suburb": "Khoroshevsky"

postal_code string Postal code
"postal_code": "125167"

Example

Request

https://geo.rustore.ru/api/suggest?api_key=<YOUR_API_KEY>&limit=3&q=Mo
scow%20Leningradsky%2039

Response

641

{
"request": "/suggest?limit=2&q=Moscow Leningradsky

39&api_key=demo_demo_main",
"results": [
{
"address": "Russia, Moscow, Northern Administrative District,

Moscow, Khoroshevsky, Leningradsky Prospekt, 39 79",
"name": "Leningradsky Prospekt, 39 79",
"type": "building"

},
{
"address": "Russia, Moscow, Northern Administrative District,

Moscow, Khoroshevsky, Leningradsky Prospekt, 39 b80",
"name": "Leningradsky Prospekt, 39 b80",
"type": "building"

},
{
"address": "Russia, Moscow, Northern Administrative District,

Moscow, Khoroshevsky, Leningradsky Prospekt, 39 3",
"name": "Alexander Gomelsky Universal Sports Hall CSKA",
"type": "building"

}
]

}

642

Map display services

Map display services are designed to help you embed an interactive and static map into your
products.

An interactive map — service that allows you to embed a map on a website or app, enabling the
user to change the scale, angle and position of the display, as well as to add various elements
to the map using JS: pins, curves, highlighting, etc.

A static map — service that allows you to get a map image with pins placed on it as a PNG or
JPG image.

Services

Call point Description

Interactive map

/staticmap Static map

643

Interactive map

Quick start 368
1. Map 379
2. Properties and options 447
3. Tags and controls 457
4. Geography and geometry 477
5. Handlers 487
6. Sources 496
7. Events 504
8. How to use the library in React applications 508
Description of additional map objects 515

The following components are required to display an interactive map:
● display data (tiles);
● display style;
● map display code.

The display data is represented as square-shaped mosaic pieces — tiles. The whole set of tiles
is a pyramid. There is one tile at the zero pyramid scale. Further, the number of tiles at each
next scale is 4n, where n is the scale number. Each tile contains geometric and attribute
information.

Map display styles are a json object with a description of where to get data and how to draw
certain elements.

To embed maps in your project, you need to add a layout element to the page where the map
will be displayed.

How to create an interactive map

To simply display the map, you need to add JS & CSS files from SDK, as well as add the map
initialization code, having specified the current API access key.

For initialization, you must specify the required style:

● light_style.json — mmr://api/styles/light_style.json
● mapsme_style.json — mmr://api/styles/mapsme_style.json
● main_style.json — mmr://api/styles/main_style.json

Adding objects to the map

To add your objects to the map, first you need to describe their coordinates using GeoJson.

Adding a pin point

644

https://geojson.org/

Follow the steps below to add a separate layer with icons:

Create a list of points to add to the map:

let userPointData = {
"type": "FeatureCollection",
"features": [{

"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [37.6165, 55.7505]

}
}, {

"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [37.4165, 55.7505]

}
}, {

"type": "Feature",
"geometry": {

645

"type": "Point",
"coordinates": [37.6165, 55.8505]

}
}]

};

The next step is to describe the point icon and add a layer describing that the points should be
drawn with this icon. This should be done upon the map loading event.

map.on('load', function () {
map.loadImage(

'https://geo.rustore.ru/api/styles/pins/blue_target.png',
function (error, image) {

if (error) throw error;
map.addImage('custom_pin', image);
map.addLayer({

"id": "points",
"type": "symbol",
"source": {

"type": "geojson",
"data": userPointData

},
"layout": {

"icon-image": "custom_pin",
"icon-size": 1

}
});

}
);

});

646

Adding a line

Line objects are added to the map in the same way as point objects — you need to prepare the
data and describe it.

Just like in the previous example, you need to prepare the data and present it in two lines, for
example.

let userLineData = {
"type": "FeatureCollection",
"features": [{

"type": "Feature",
"geometry": {

"type": "LineString",
"coordinates": [

[37.6165, 55.7505],
[37.6375, 55.7515],
[37.6375, 55.7515],
[37.665, 55.7545],
[37.765, 55.7645],
[37.785, 55.7745],
[37.803, 55.7645],
[37.83, 55.7545],
[37.89, 55.78]

647

]
}

}, {
"type": "Feature",
"geometry": {

"type": "LineString",
"coordinates": [

[37.4165, 55.7505],
[37.4166, 55.7505],
[37.4169, 55.6],
[37.5169, 55.545],
[37.6169, 55.45],
[37.5169, 55.334],
[37.3169, 55.211]

]
}

}]
};

Next, add a layer description. Also add a new layer to the loading event of the main map.

map.on('load', function () {
map.addLayer({

'id': 'route',
'type': 'line',
'source': {

'type': 'geojson',
'data': userLineData

},
'layout': {

'line-join': 'round',
'line-cap': 'round'

},
'paint': {

'line-color': '#AE3478',
'line-width': 8

}
});

});

Adding a polygon

648

Adding a layer with polygons is similar to creating a layer with lines. Polygons can be either
solid or hatched. For example, add a complex polygon to the map:

let userPolygonData = {
"type": "FeatureCollection",
"features": [{

"type": "Feature",
"geometry": {

"type": "Polygon",
"coordinates": [

[
[37.427278, 55.756486],
[37.387117, 55.734843],
[37.405653, 55.709126],
[37.4592, 55.70042],
[37.518239, 55.683585],
[37.617439, 55.690939],
[37.669614, 55.707578],
[37.674419, 55.73291],
[37.635975, 55.777345],
[37.583457, 55.795105],
[37.525791, 55.799544],
[37.478765, 55.780049],
[37.427278, 55.756486]

649

], [
[37.495585, 55.749917],
[37.481511, 55.745666],
[37.48872, 55.718796],
[37.536432, 55.718989],
[37.582428, 55.724983],
[37.592382, 55.740835],
[37.551535, 55.759964],
[37.495585, 55.749917]

]
]

}
}]

};

And describe how to draw it on the map:

map.on('load', function () {
map.addLayer({

'id': 'maine',
'type': 'fill',
'source': {

'type': 'geojson',
'data': userPolygonData

},
'layout': {},
'paint': {

'fill-color': '#6ea5e8',
'fill-opacity': 0.5

}
});

});

650

Quick start

MMR GL JS — JavaScript library that uses WebGL to render interactive maps.

Quick start

How to connect to a html page

It is required to add <script> and <link> in <head> tag

<head>
...
<script

src="https://geo.rustore.ru/sdk/js/<version>/mmr-gl.js"></script>
<link href="https://geo.rustore.ru/sdk/js/<version>/mmr-gl.css"

rel="stylesheet">
...

</head>

It is recommended to use the latest SDK version. To get the latest SDK version, you can
specify 0 or 0.0 instead of the exact version, which will load the latest up-to-date version
with the number 0.x.x or 0.0.x respectively.

To initialize the map, add the following code:
<div id="map" style="width: 800px; height: 600px;"></div>
<script>
mmrgl.accessToken = 'Token';
var map = new mmrgl.Map({
container: 'map',
zoom: 8,
center: [37.6165, 55.7505],
style: 'mmr://api/styles/main_style.json',
hash: true

});
</script>

Create a token

To install @geors/maps-sdk-js, create a token at github:
1. Go to user settings.
2. Find the Developer settings button at the bottom left.
3. Create a Personal access token with reading access to packages (read:packages).
4. Create a .npmrc file at the root of the project.
5. Add two lines to the created file.

651

https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-npm-registry#installing-a-package

@geors:registry=https://npm.pkg.github.com
//npm.pkg.github.com/:_authToken=ACCESS_TOKEN

Replace ACCESS_TOKEN to the created one.

Install a package

Navigate to the project root to package.json and use npm or yarn to install the package

yarn add @geors/maps-sdk-js
or

npm install @geors/maps-sdk-js

To initialize the map, add the following code (example in React):

import mmrgl from '@geors/maps-sdk-js';
import { useEffect } from 'react'

import '@geors/maps-sdk-js/dist/mmr-gl.css';

export function Map() {
useEffect(() => {
mmrgl.accessToken = 'accessToken';

const map = new mmrgl.Map({
container: 'map',
zoom: 8,
center: [37.6165, 55.7505],
style: 'mmr://api/styles/main_style.json',
hash: true,

})

return () => {
if (map) map.remove();

}
}

return <div id="map" style={{ width: '800px', height: '600px'}} />
}

652

653

1. Map

The map on the page is associated with a Map object. It provides methods and properties that
allow you to modify the map from code. When an MMR GL JS map is created, it initializes it and
returns a Map object.

Parameters

Name Type Description

container HTMLElement | string The HTML element or block id into which
MMR GL JS will render the map.

The specified element must not contain
dependent elements.

minZoom number
default: 0

Minimum zoom level (0-20).

maxZoom number
default: 20

Maximum zoom level (0-20).

minPitch number
default: 0

Minimum map tilt level (0-85).

maxPitch number
default: 85

Maximum map tilt level (0-85).

style object | string Map style in JSON or style reference.
This is a JSON object composed
according to the style rules.

● light_style.json —
mmr://api/styles/light_style.json

● dark_style.json —
mmr://api/styles/dark_style.json

● main_style.json —
mmr://api/styles/main_style.json

hash boolean | string
default: false

If true, all page parameters (zoom,
latitude, longitude and pitch) will be
synced to the URL via parameter #.

interactive boolean
default: false

If false, the map will not respond to any
control (mouse, screen, keyboard).

bearingSnap number
default: 7

Boundary, measured in degrees,
determines when the map's bearing will
be locked to the north.

654

pitchWithRotate boolean
default: true

If false, "drag and rotate" map tilt control
will be disabled.

clickTolerance number
default: 3

Maximum number of pixels the user is
able to point during a valid click (as
opposed to dragging the mouse).

attributionControl boolean
default: true

If true, AttributionControl will be added to
the map.

customAttribution string | Array<string> A string or strings to be displayed in
AttributionControl. Only possible if
attributionControl = true.

failIfMajorPerfomanc
eCaveat

boolean
default: false

If true, map initialization will fail in case
the map's performance is not
acceptable.

preserveDrawingBuff
er

boolean
default: false

If true, the map canvas can be exported
to a PNG image using
map.getCanvas().toDataUrl().

Set to false by default to improve
performance.

antialias boolean
default: false

If true, the gl context will be created
using MSAA anti-aliasing, which can be
useful for anti-aliasing custom layers.

Set to false by default to improve
performance.

refreshExpiredTiles boolean
default: true

If false, then the map will not request
tiles after they expire, according to the
cacheControl / expires headers.

maxBounds LngLatBoundsLike If set, the map will be limited to the given
boundaries.

scrollZoom boolean | object
default: true

If true, then scroll zoom works. The
object value is passed as parameters to
ScrollZoomHandler.

boxZoom boolean
default: true

If true, "box zoom" interaction is enabled
(see BoxZoomHandler for details)

dragRotate boolean
default: true

If true, "drag to rotate" interaction is
enabled (learn more about
DragRotateHandler)

655

dragPan boolean | object
default: true

If true, "drag to pan" interaction is
enabled (learn more about
DragPanHandler)

keyboard boolean
default: true

If true, you can use the keyboard and
keyboard shortcuts to interact with the
map (learn more about
KeyboardHandler)

doubleClickZoom boolean
default: true

If true, "double click to zoom" interaction
is enabled (learn more about
DoubleClickZoomHandler)

touchZoomRotate boolean | object
default: true

If true, "pinch to rotate and zoom"
interaction is enabled (learn more about
TouchZoomRotateHandler)

touchPitch boolean | object
default: true

If true, drag to pitch interaction is
enabled (learn more about
TouchPitchHandler)

trackResize boolean
default: true

If true, the map will automatically resize
itself when the window changes.

center LngLatLike
default: [0,0]

Initial point on the map.

If the center is not specified in the
constructor parameters, MMR GL JS will
search for it in the map style object. If it
is also not specified in the style, it will
default to [0, 0].

Note: coordinate order of longitude,
latitude (as opposed to latitude,
longitude) is used to match GeoJSON.

zoom number
default: 0

Initial scale level of the map.

If the zoom level is not specified in the
constructor parameters, MMR GL JS will
search for it in the map style object. If it
is also not specified in the style, it will
default to 0.

bearing number
default: 0

Initial bearing (rotation) of the map,
measured in degrees counterclockwise
from north.

If the bearing is not specified in the
constructor parameters, MMR GL JS will
search for it in the map style object. If it
is also not specified in the style, it will
default to 0.

656

pitch number
default: 0

Initial step (tilt) of the map, measured in
degrees (0-85).

If the step is not specified in the
constructor parameters, MMR GL JS will
search for it in the map style object. If it
is also not specified in the style, it will
default to 0.

bounds LngLatBoundsLike Initial map boundaries. If boundaries are
given, it defines center and zoom.

fitBoundsOptions object Map#fitBounds Object parameters
should only be used when fitting the
original bounds above.

renderWorldCopies boolean
default: true

If true, then multiple copies will be
rendered side by side beyond -180 and
+180 degrees of longitude.

If set to false:
● when the map is enlarged so that

no image of the world fills the
entire map container, there will
be empty space beyond +180
and -180 degrees of longitude.

● features that intersect +180 and
-180 degrees of longitude will be
cut in two (one on the right edge
and one on the left) at each zoom
level.

maxTileCache number
default: null

Maximum number of tiles stored in the
cache for this source. If this parameter is
omitted, the cache size will be
dynamically determined based on the
current viewport.

localIdeographFontF
amily

string
default: sans-serif

Specifies a CSS font-family to locally
redefine glyph generation in 'CJK Unified
Ideographs', 'Hiragana', 'Katakana' and
'Hangul Syllables'.

In these language frameworks, the font
settings from the map style will be
ignored, except for font-weight
(light/regular/medium/bold).

Set to false to enable the font settings
from the map style for these glyphs.

657

localFontFamily string
default: false

Define a CSS font-family to redefine the
generation of all glyphs.

Font settings from the map style will be
ignored, except for font-weight
(light/regular/medium/bold).
If this option is set, it overrides the
setting in localIdeographFontFamily.

transformRequest RequestTransformFu
nction
default: null

This function is executed before the URL
request is executed. It can be used to
change URL, set headers, or credentials
for cross-domain requests.

collectResourceTimin
g

boolean
default: false

If true, Resource Timing API will be
available for requests made by
GeoJSON and Vector Tile (this
information is not normally available from
the main JavaScript thread). The
information will be returned in
ResourceTiming.

fadeDuration number
default: 300

Animation duration controls
fade-in/fade-out animation for caption
collisions in milliseconds. This setting
does not affect the duration of style
transitions during runtime or crossfading
of bitmap tiles.

crossSourceCollision
s

boolean
default: true

If true, then characters from multiple
sources may collide with each other
during collision detection. If false,
collision detection is performed
separately for symbols in each source.

accessToken string
default: null

If specified, then this token will be used
instead of the one specified in
mmrgl.accessToken

658

locale object
default: null

A patch to apply to the default
localization table for UI strings, such as
control hints. The locale object correlates
UI string identifiers in the namespace to
translated strings in the target language;
see src/ui/default_locale.js for all
supported string identifiers for example.
An object can specify all user interface
strings (thus adding new translation
available) or only a subset of strings
(thus fixing the default translation table).

Example

var map = new mmrgl.Map({
container: 'map',
center: [37.6165, 55.7505],
zoom: 8,
style: styleObject,
hash: true,
transformRequest: (url, resourceType)=> {

if(resourceType === 'Source' &&
url.startsWith('http://myHost')) {

return {
url: url.replace('http', 'https'),
headers: { 'my-custom-header': true},
credentials: 'include' // Include cookies for

cross-origin requests
}

}
}

});

659

Methods

Name Description

addControl(control,
position?)

Adds an IControl to the map by calling control.onAdd(this)

Options:
control:iControl IControl to add
position:string position on the map ('top-left' , 'top-right' , 'bottom-left' , and
'bottom-right'). The default is 'top-right'.

addImage(id, image,
options)

Add an image to the style. This image can be displayed on the map like any
other icon in the sprite, using an image ID with icon-image, background-pattern,
fill-pattern, or line-pattern.

The Map.event:error event will be called if there is not enough space in the sprite
to add this image.

Options:
id:string Image ID image:HTMLImageElement | ImageBitmap | image data |
{width: number, height: number, data: (Uint8Array | Uint8ClampedArray)}
| StyleImageInterface
An image as an HTMLImageElement , ImageData , ImageBitmap , or an object
with width, height, and data properties in the same format as ImageData options
{
pixelRatio is the pixel ratio in an image to physical pixels on the screen.
sdf whether to interpret the image as an SDF image.
stretchX [[x1, x2], ...] if icon-text-fit is used on this image layer, this option
specifies the image portion(s) that can be stretched horizontally.
stretchY [[y1, y2], ...] if icon-text-fit is used on this image layer, this option
specifies the image portion(s) that can be stretched vertically.
content [x1, y1, x2, y2] if icon-text-fit is used on this image layer, this option
specifies the image portion(s) that can be covered by the text field content.

}
// If the style's sprite does not already contain an image
with ID 'cat',
// add the image 'cat-icon.png' to the style's sprite with
the ID 'cat'.
map.loadImage('https://upload.wikimedia.org/wikipedia/commo
ns/thumb/6/60/Cat_silhouette.svg/400px-Cat_silhouette.svg.p
ng', function(error, image) {

if (error) throw error;
if (!map.hasImage('cat')) map.addImage('cat', image);

});

// Add a stretchable image that can be used with
`icon-text-fit`
// In this example, the image is 600px wide by 400px high.

660

map.loadImage('https://upload.wikimedia.org/wikipedia/commo
ns/8/89/Black_and_White_Boxed_%28bordered%29.png',
function(error, image) {

if (error) throw error;
if (!map.hasImage('border-image')) {

map.addImage('border-image', image, {
content: [16, 16, 300, 384], // place text over

left half of image, avoiding the 16px border
stretchX: [[16, 584]], // stretch everything

horizontally except the 16px border
stretchY: [[16, 384]], // stretch everything

vertically except the 16px border
});

}
});

661

addLayer(layer,
beforedId?)

Adds a style layer to the map style.

The layer determines how the data from the specified source will be styled.

Options:
layer ((Object | CustomLayerInterface)) the layer to add, matches either the
style specification or the CustomLayerInterface specification. Description of the
Layer object:

Name Description

id:string Unique layer ID

type:string Layer type (for example, fill or symbol). A list of layer
types is available in the Style Specification.
(It can also be customized. Learn more about
CustomLayerInterface)

source:(string |
object)

Layer data source. A reference to a source that has
already been identified using a unique ID. Refer directly
to the new source using the original object (as defined
in the style specification). This is required for all
layer.type parameters except custom.

sourceLayer (optional)
layer name in the specified layer.source to be used for
the style layer. This only applies to vector tiles and is
required if layer.source is of type vector.

filter:array (optional)
An expression that specifies the conditions for the
objects. Only those objects that match the filter are
displayed. The style specification contains additional
information about the limitations of the filter parameter
and a complete list of available expressions. If no filter
is provided, all objects will be displayed.

layer:object (optional)
Layer properties. The available properties depend on
the layer type. A complete list of properties for each
layer type is available in Style Specification. If no layout
properties are set, the default values will be used.

maxzoom:number (optional)
Maximum layer zoom level. Zoom levels equal to or
greater than maxzoom will hide the layer. The value can
be any number between 0 and 24 (inclusive). If
maxzoom is not specified, the layer will be visible at all
zoom levels for which tiles are available.

662

minzoom:number (optional)
Minimum layer zoom level. At zoom levels less than
minzoom, the layer will be hidden. The value can be
any number between 0 and 24 (inclusive). If minzoom is
not provided, the layer will be visible at all zoom levels
as long as tiles are available.

metadata:object (optional)
Arbitrary properties that are useful for tracking with the
layer, but do not affect rendering.

renderingMode:stri
ng

For custom layers only. Learn more about
CustomLayerInterface.

beforeId:string new layer inserts before the existing layer by ID, causing the
new layer to visually appear below the existing layer. If this argument is not
specified, the layer will be added to the end of the layers array and will be
displayed above all other layers.

// Add a circle layer with a vector source
map.addLayer({

id: 'points-of-interest',
source: {

type: 'vector',
url: 'path-to-source'

},
'source-layer': 'poi_label',
type: 'circle',
paint: {

// Style Specification paint properties
},
layout: {
// Style Specification layout properties
}

});

// Define a source before using it to create a new layer
map.addSource('state-data', {

type: 'geojson',
data: 'path/to/data.geojson'

});

map.addLayer({
id: 'states',
// References the GeoJSON source defined above
// and does not require a `source-layer`
source: 'state-data',

663

type: 'symbol',
layout: {

// Set the label content to the
// feature's `name` property
text-field: ['get', 'name']

}
});

// Add a new symbol layer before an existing layer
map.addLayer({

id: 'states',
// References a source that's already been defined
source: 'state-data',
type: 'symbol',
layout: {

// Set the label content to the
// feature's `name` property
text-field: ['get', 'name']

}
// Add the layer before the existing `cities` layer

}, 'cities');

664

addSource(id,
source)

Adds a source to the map style.

Options:
id:string added source ID. Should not conflict with existing sources.
source:object source object that conforms to the source specification or
CanvasSourceOptions.

map.addSource('my-data', {
type: 'vector',
url: 'path-to-source'

});

map.addSource('my-data', {
"type": "geojson",
"data": {

"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [-77.0323, 38.9131]

},
"properties": {

"title": "title",
"marker-symbol": "monument"

}
}

});

areTilesLoaded() Returns a Boolean value indicating whether all tiles in the viewport are loaded
from all style sources.

var tilesLoaded = map.areTilesLoaded();

boxZoom BoxZoomHandler of the map, which implements zooming with a Shift-drag
gesture. For more information and examples of how to use boxZoom refer to
BoxZoomHandler

665

cameraForBounds(bo
unds, options?)

Options:
bounds:LngLatBoundsLike calculates the bounds center on the window using
the highest zoom level up to Map#getMaxZoom() that fits on the window.
LngLatBounds is a box that is always axis aligned with bearing 0.

Name Description

padding:number|P
addingOptions

Amount of padding in pixels, to add to the given bounds.

bearing:number Desired map bearing at the end of the animation, in
degrees.

offset:PointLike Center of the specified boundaries relative to the map
center, measured in pixels.

maxZoom:number Maximum zoom level allowed when the camera moves
within the specified boundaries.

var bbox = [[-79, 43], [-73, 45]];
var newCameraTransform = map.cameraForBounds(bbox, {
padding: {top: 10, bottom:25, left: 15, right: 5}

});

doubleClickZoom DoubleClickZoomHandler of a map that allows the user to zoom in by a double
click. For more information and examples of using doubleClickZoom refer to
DoubleClickZoomHandler

dragPan DragPanHandler of a map which implements dragging the map with a mouse or
touch gesture. For more information and examples of how to use dragPan, see
DragPanHandler

dragRotate DragRotateHandler of a map, which implements the map rotation when dragging
with right-click or while holding down the control key. For more information and
examples of how to use dragRotate, see DragRotateHandler.

easeTo(options,
eventData?)

Changes any combination of center, zoom, bearing, pitch and padding with an
animated transition between previous and new values. The map will retain its
current values for any details not specified in the options.

The transition will happen instantly if the user has enabled the reduced
motion feature, unless the options include essential: true.

Options:
options parameters which describe destination and transition animation.
Accepts CameraOptions and AnimationOptions.
eventData are additional properties added to event objects raised by this
method.

666

fitBounds(bounds,
options?,
eventData?)

Moves and scales the map so that it contains the viewable area within the given
geographic boundaries. This function will also reset the map bearing to 0 if the
bearing is not zero. If padding is set on the map, the boundaries will match the
inset.

Options:
bounds:LngLatBoundsLike centralizes these boundaries in the window and uses
the highest zoom level up to the Map#getMaxZoom() that matches them in the
window.
options:Object options support all properties from AnimationOptions and
CameraOptions in addition to the fields below.

Name Description

padding:number|PaddingOpt
ions

Number of padding in pixels to be added to the
given boundaries.

linear:boolean If true, then the map is transitioned using
Map#easeTo. If false, then the map is
navigated using Map#flyTo. These functions
and AnimationOptions are used to get
information about available options.

easing:function? Animated transition easing function. See
AnimationOptions

offset:PointLike Center of the specified boundaries relative to
the map center, measured in pixels.

maxZoom:number Maximum zoom level allowed when the
camera moves within the specified boundaries.

eventData represents additional properties added to event objects raised by this
method.

var bbox = [[-79, 43], [-73, 45]];
map.fitBounds(bbox, {
padding: {top: 10, bottom:25, left: 15, right: 5}

});

667

fitScreenCoordinates(
p0, p1, bearing,
options?,
eventData?)

Pans, rotates and scales the map to fit the box made by p0 and p1 once the map
is rotated to the specified bearing. To zoom in without rotation, transmit the
current bearing of the map.

Options:
p0:PointLike first point on the screen in pixel coordinates
p1:PointLike second point on the screen in pixel coordinates
bearing:number desired map bearing at the end of the animation, in degrees.
This value is ignored if the map has a non-zero step.
options:

Name Description

padding:number|Padding
Options

Number of padding in pixels to be added to the
given boundaries.

linear:boolean If true, then the map is transitioned using
Map#easeTo. If false, then the map is navigated
using Map#flyTo. These functions and
AnimationOptions are used to get information
about available options.

easing:function? Animated transition easing function. See
AnimationOptions

offset:PointLike Center of the specified boundaries relative to the
map center, measured in pixels.

maxZoom:number Maximum zoom level allowed when the camera
moves within the specified boundaries.

eventData represents additional properties added to event objects raised by this
method.

var p0 = [220, 400];
var p1 = [500, 900];
map.fitScreenCoordinates(p0, p1, map.getBearing(), {
padding: {top: 10, bottom:25, left: 15, right: 5}

});

668

flyTo(options,
eventData?)

Changes any combination of center, zoom, bearing and pitch, creating an
animated transition along a curve that triggers movement. The animation
seamlessly incorporates zooming and panning to preserve user’s orientation
even after traveling a long distance.

The animation will be skipped, and this will act equivalent to jumpTo if the
user has enabled the reduced motion feature in his operating system,
unless "options" include essential: true.

Name Description

curve:number
default: 1.42

"Curve" scaling that will be performed along the
motion path. A high value maximizes scaling for
an exaggerated animation, while a low value
minimizes scaling resulting in an effect close to
Map#easeTo. 1.42 is an average value chosen
by user study participants discussed in van Wijk
(2003). Math.pow(6, 0.25) would be equivalent
to the rms average speed. A value of 1 will
produce a circular motion.

minZoom:number Zero zoom level at the peak of the motion path.
If options.curve is specified, then this option is
ignored.

speed:number
default: 1.2

Average animation speed is determined in
relation to options.curve. 1.2 speed means that
the map appears to be moving along its flight
path 1.2 times faster. Screenful is the visible
map span. It does not correspond to a fixed
physical distance, but varies depending on the
zoom level.

screenSpeed:number? Average animation speed is measured in screen
seconds, assuming a linear time curve. If the
options.speed parameter is specified, then this
parameter is ignored.

maxDuration:number? Maximum animation duration, measured in
milliseconds. If the duration exceeds the
maximum value, it is reset to 0.

eventData represents additional properties added to event objects that are
called by this method.

// fly with default options to null island
map.flyTo({center: [0, 0], zoom: 9});
// using flyTo options
map.flyTo({
center: [0, 0],
zoom: 9,
speed: 0.2,

669

curve: 1,
easing(t) {
return t;

}
});

getBearing() Returns the current map bearing. Bearing — compass direction, which is "up"; for
example, bearing 90° rotates the map so that east is up.

getBounds() Returns the geographic map boundaries. When the bearing or pitch is non-zero,
the viewable area is not an axis-aligned rectangle, and the result is the smallest
boundary enclosing the viewable area. If padding is specified on the map, then
the boundaries will be relative to the insert.

var bounds = map.getBounds();

getCanvas() Returns <canvas> map element.

getCanvasContainer(
)

Returns an HTML element containing the map <canvas> element.
If you want to add non-GL overlays to the map, you must add them to this
element.

This is the element to which events are bound for map interactivity (such as pan
and zoom). It will receive events from dependent elements such as <canvas> but
not map controls.

getCenter() Returns the geographic map center point.

// return a LngLat object such as {lng: 0, lat: 0}
var center = map.getCenter();
// access longitude and latitude values directly
var {longitude, latitude} = map.getCenter();

getContainer() Returns an HTML element containing the map.

670

getFeatureState(feat
ure)

Returns the object state. The object state is a set of user-defined key-value pairs
that are assigned to an object at run time. Features are defined via the feature.id
attribute, which can be any number or string.

To access object values for object styling purposes, use feature
expressions.

Options:
feature:Object object identifier. Feature objects returned from
Map#queryRenderedFeatures or event handlers can be used as object
identifiers.
options:

Name Description

id:number|string Unique feature identifier. Can be an integer or
a string, but only supports string values when
the promoteId parameter is applied to the
source or either the string can be set to an
integral value.

source:string Vector or GeoJSON source ID for the feature.

sourceLayer:string (optional) Sources of vector tiles require
sourceLayer.

// When the mouse moves over the `my-layer` layer,
// get the feature state for the feature under the mouse
map.on('mousemove', 'my-layer', function(e) {
if (e.features.length > 0) {
map.getFeatureState({
source: 'my-source',
sourceLayer: 'my-source-layer',
id: e.features[0].id

});
}

});

getFilter(layerId) Returns the filter applied to the specified style layer.

getFreeCameraOptio
ns()

Returns position and orientation of the camera object.

getLayer(id) Returns the layer with the specified map style ID.

Options:
id:string layer ID to be obtained.

var stateDataLayer = map.getLayer('state-data');

671

getLayoutProperty(la
yerId, name)

Returns the layout property value on the specified style layer.

Options:
layerId:string layer ID from which the layout property will be obtained.
name:string is the layer property name to be obtained.

getLight() Returns the light object value .

getMaxBounds() Returns the maximum geographic boundaries the map is bound to, or null if they
are not set.

var maxBounds = map.getMaxBounds();

getMaxPitch() Returns the maximum allowable tilt of the map.

getMaxZoom() Returns the maximum acceptable zoom level for the map.

var maxZoom = map.getMaxZoom();

getMinPitch() Returns the minimum allowable map step.

getMinZoom() Returns the minimum acceptable zoom level for the map.

var minZoom = map.getMinZoom();

getPadding() Returns the current padding applied around the map viewport.

getPaintProperty(laye
rId, name)

name:string paint name to be obtained.

Returns the paint property value on the specified style layer.

Options:
layerId:string layer ID from which the paint property will be derived.
name:string paint property name to be obtained.

getPitch() Returns the current tilt of the map.

672

getRenderWorldCopi
es()

Returns the state of renderWorldCopies. If this is true, then multiple copies of the
world will be rendered side by side beyond -180 and +180 degrees of longitude.
If set to false:

● when the map is zoomed so that no image of the world fills the entire map
container, there will be empty space beyond +180 and -180 degrees of
longitude.

● features that intersect +180 and -180 degrees of longitude will be divided
in two (one on the right edge of the map and one on the left) at each
zoom level.

var worldCopiesRendered = map.getRenderWorldCopies();

getSource(id) Returns the source with the specified map-style ID.

This method is often used to update a source with instance elements for the
appropriate source type defined in sources. For example, to set the data for a
GeoJSON source, or update the URL and coordinates of an image source.

Options:
id:string source ID to be obtained.

var sourceObject = map.getSource('points');

getStyle() Returns the map style object, a JSON object that can be used to recreate the
map style.

map.on('load', function() {
var styleJson = map.getStyle();

});

getTerrain() Returns the terrain specification, or null if terrain is not defined on the map.

getZoom() Returns the current map zoom level.

map.getZoom();

hasControl(control) Verifies whether there is a control on the map.

Options:
control:IControl IControl for navigation control

// Define a new navigation control.
var navigation = new mmrgl.NavigationControl();
// Add zoom and rotation controls to the map.
map.addControl(navigation);
// Check that the navigation control exists on the map.
const added = map.hasControl(navigation);

673

// added === true

hasImage(id) Checks if an image with a specific ID exists in the style. Validates both the
images in the original style sprite and any images added using the
Map#addImage method.

Options:
id:string image ID.

// Check if an image with the ID 'cat' exists in
// the style's sprite.
var catIconExists = map.hasImage('cat');

isMoving() Returns true if the map is moved, scaled, rotated, or tilted via a camera
animation or user gesture.

var isMoving = map.isMoving();

isRotating() Returns true if the map is rotating via a camera animation or user gesture.
map.isRotating();

isSourceLoaded(id) Returns a Boolean value indicating whether the source has been loaded.
Returns true if the source with the given map style ID has no network requests,
otherwise returns false.

Options:
id:string source ID to be verified

var sourceLoaded = map.isSourceLoaded('bathymetry-data');

isStyleLoaded() Returns a Boolean value indicating whether the map style is fully loaded.

var styleLoadStatus = map.isStyleLoaded();

isZooming() Returns true if the map is zoomed via a camera animation or user gesture.

var isZooming = map.isZooming();

674

jumpTo(options,
eventData?)

Changes any combination of center, zoom, bearing and pitch without an
animated transition. The map will retain its current values for any details not
specified in the options.

Options:
options:CameraOptions option object
eventData are additional properties added to event objects called by this
method.

// jump to coordinates at current zoom
map.jumpTo({center: [0, 0]});
// jump with zoom, pitch, and bearing options
map.jumpTo({
center: [0, 0],
zoom: 8,
pitch: 45,
bearing: 90

});
Copy

keyboard KeyboardHandler of the map, which allows the user to zoom, rotate, and pan the
map using keyboard shortcuts. For more information refer to KeyboardHandler

listImages() Returns a string array containing the IDs of all images currently available on the
map. This includes both images from the original style sprite and any images
added using the Map#addImage method.

var allImages = map.listImages();

loaded() Returns a Boolean value indicating whether the map is fully loaded.
Returns false if the style has not yet been fully loaded, or if there have been
changes to the sources or style that are not yet fully loaded.

loadImage(url,
callback)

Uploads an image from an external URL to use with Map#addImage. External
domains must support CORS.

Options:
url:string The image file URL. The image file must be in png, webp or jpg.
callback:Function wait callback(error, data). Called when an image is loaded, or
with an error argument in case of an error.

// Load an image from an external URL.
map.loadImage('http://placekitten.com/50/50',
function(error, image) {
if (error) throw error;

675

// Add the loaded image to the style's sprite with the ID
'kitten'.
map.addImage('kitten', image);

});

moveLayer(id,
beforeId?)

Moves the layer to a different z-position.

Options:
id:string layer ID to be moved.
beforeId:string layer ID before which the new layer will be inserted. When
viewing the map, the layer ID will appear below the BeforeID layer. If the
BeforeID parameter is omitted, then the layer will be added to the end of the
layers array and appear above all other layers on the map.
// Move a layer with ID 'polygon' before the layer with ID
'country-label'. The `polygon` layer will appear beneath
the `country-label` layer on the map.
map.moveLayer('polygon', 'country-label');

off(type, listener) Removes the event listener previously added with Map#on.

Options:
type:string The event type previously used to set the listener.
listener:Function is the function previously set as the listener.

off(type, layerId,
listener)

Removes the event listener for specific layer events previously added with
Map#on.

Options:
type:string The event type previously used to set the listener.
layerId:string The layer ID previously used to set the listener.
listener:Function is the function previously set as the listener.

676

on(type, layerId,
listener)

Adds a listener for events of the specified type, optionally limited to objects in the
specified style layer.

Options:
type:string event type for the listener. Events compatible with the optional
layerId parameter are called when the cursor enters the visible portion of the
specified layer outside that layer or outside the map canvas.

Event Compatible with layerId

mousedown yes

mouseup yes

mouseover yes

mouseout yes

mousemove yes

mouseenter yes (required)

mouseleave yes (required)

click yes

dbclick yes

contextmenu yes

touchstart yes

touchend yes

touchcancel yes

wheel

resize

remove

touchmove

movestart

move

moveend

677

dragstart

drag

dragend

zoomstart

zoom

zoomend

rotatestart

rotate

rotateend

pitchstart

pitch

pitchend

boxzoomstart

boxzoomend

boxzoomcancel

webglcontextlost

webglcontextrestored

load

render

idle

error

data

styledata

sourcedata

678

dataloading

styledataloading

sourcedataloading

styleimagemissing

layerId:string (optional) style layer ID. The event will only be called if its location
is within a visible object in that layer. The event will have features which contain
an array of relevant objects. If layerId is not specified, the event will not have
features. Note that many event types are incompatible with layerId.
listener:Function The function to be triggered by an event.

// Set an event listener that will fire
// when the map has finished loading
map.on('load', function() {

// Once the map has finished loading,
// add a new layer
map.addLayer({

id: 'points-of-interest',
source: {

type: 'vector',
url: 'path-to-source'

},
'source-layer': 'poi_label',
type: 'circle',
paint: {

// Style Specification paint properties
},
layout: {

// Style Specification layout properties
}

});
});

// Set an event listener that will fire
// when a feature on the countries layer of the map is
clicked
map.on('click', 'countries', function(e) {

new mmrgl.Popup()
.setLngLat(e.lngLat)
.setHTML(`Country name:

${e.features[0].properties.name}`)
.addTo(map);

});

679

once(type, listener) Adds a listener that will only be called once for the specified event type.

Options:
layerId:string (optional) style layer ID. The event will only be called if its location
is within a visible object in that layer. The event will have a features property
containing an array of relevant objects. If layerId is not specified, the event will
not have a features property. Note that many event types are incompatible with
the optional layerId parameter.
listener:Function. This function is called when the event is triggered.

once(type, layerId,
listener)

Adds a listener that will be called only once for the specified event type that
occurs within objects in the specified style layer.

Options:
type:string event type for the listener; available values: 'mousedown' ,
'mouseup' , 'click' , 'dblclick' , 'mousemove' , 'mouseenter' , 'mouseleave' ,
'mouseover' , 'mouseout' , 'contextmenu' , 'touchstart' , 'touchend' or
'touchcancel' . The mouseenter and mouseover events are called when the
cursor enters the visible part of the specified layer outside that layer or outside
the map canvas. The mouseleave and mouseout events are called when the
cursor leaves the visible part of the specified layer or leaves the map canvas.
layerId:string style layer ID. Only events within the visible object in the current
layer will trigger the listener. The event will have a features property containing
an array of relevant objects.
listener:Function — this function is called when the event is triggered.

panBy(offset,
options?,
eventData?)

Map panning at a given offset.

Options:
offset:PointLike x and y coordinates to pan the map.
options:AnimationOptions options object
eventData are additional properties added to event objects triggered by this
method.

panTo(lnglat,
options?,
eventData?)

Moves the map to the specified location via an animated transition.

Options:
lnglat:LngLatLike a place to pan the map.
options:AnimationOptions an options object
eventData are additional properties added to event objects trigged by this
method.

map.panTo([-74, 38]);

// Specify that the panTo animation should last 5000
milliseconds.
map.panTo([-74, 38], {duration: 5000});

680

project(lnglat) Returns a point that represents the pixel coordinates, relative to the map
container, corresponding to the specified geographic location.

When the map is tilted and lnglat is completely behind the camera, there are no
pixel coordinates corresponding to that location. In this case, x and y
components of the returned point will be Number.MAX_VALUE.

lnglat:LngLatLike project geographic location.

var coordinate = [-122.420679, 37.772537];
var point = map.project(coordinate);

681

queryRenderedFeatu
res(geometry?
options?)

Returns an array of GeoJSON Feature objects representing the visible features
that match the request parameters.

Options:
geometry: PointLike | Array<PointLike> Area geometry in pixels, either a single
point or bottom left and top right points describing the bounding box where the
origin is at the top left. When omitting this parameter (i.e. calling
Map#queryRenderedFeatures with zero arguments or with only options
argument) it would be equivalent to passing a bounding box that spans the entire
map viewport.

options:

Name Description

layers:Array<string> A style layer IDs array to validate the request. Only
objects within those layers will be returned. If this
parameter is not defined, then all layers will be
checked.

filter:Array Filter to limit request results.

validate:boolean You should check whether it matches the style
specification. Validation disabling stands for
performance optimization that should only be used if
you have previously validated the values to be
passed to this function.

It returns:
Array<Object>: Objects array GeoJSON.

The property value of each returned object contains the properties of its original
object. For GeoJSON sources, only string and numeric property values are
supported (i.e., null, Array, and Object values are not supported).

Each object includes top-level layer, source, and source layer properties. The
layer property is an object that represents the style layer to which the object
belongs. The layout and paint properties on this object contain values that are
fully verified for the given zoom level and object.

Only features that are currently being visualized are enabled. Some features will
not be enabled, such as:

● objects from layers with "none" visibility property.
● objects from layers whose zoom range excludes the current zoom level.
● character features that were hidden due to text or icon collisions.

Objects from all other layers are included, as well as objects that may not have a
visible result.

The topmost rendered object appears first in the returned array, and subsequent
objects are sorted in descending z-order. Objects that are rendered multiple
times (due to anti-meridian wrapping at low zoom levels) are only returned once.
Hence, objects come from vector tiles or GeoJSON data that is converted to
tiles, objects’ geometry can be split or duplicated across tile boundaries. Thus,
objects can appear multiple times in the request results. Let’s have a look at the

682

below example: there is a highway passing through the request bounding box.
The request result will include those parts of the highway that are located inside
the map tiles covering the bounding box, even if the highway extends into other
tiles, and the part of the highway inside each map tile will be returned as a
separate object. Similarly, a point feature near a tile boundary can appear in
multiple tiles due to tile buffering.

// Find all features at a point
var features = map.queryRenderedFeatures(
[20, 35],
{ layers: ['my-layer-name'] }

);

// Find all features within a static bounding box
var features = map.queryRenderedFeatures(
[[10, 20], [30, 50]],
{ layers: ['my-layer-name'] }

);

// Find all features within a bounding box around a point
var width = 10;
var height = 20;
var features = map.queryRenderedFeatures([
[point.x - width / 2, point.y - height / 2],
[point.x + width / 2, point.y + height / 2]

], { layers: ['my-layer-name'] });

// Query all rendered features from a single layer
var features = map.queryRenderedFeatures({ layers:
['my-layer-name'] });

683

querySourceFeatures
(sourceId,
parameters?)

Returns an array of GeoJSON Feature objects that represent the features within
the specified vector tile or GeoJSON source that comply with the requested
parameters.

Options:
sourceId:string vector tiles or GeoJSON source IDs for a request.
parameters:

Name Description

sourceLayer:string Source layer request name. For vector tile
sources, this parameter is mandatory. For
GeoJSON sources, it is ignored.

filter:Array Request results imitation filter.

validate:boolean You should check whether it matches the
style specification. Validation disabling
stands for performance optimization that
should only be used if you have previously
validated the values to be passed to this
function.

Returns:
Array<Object>: GeoJSON objects array

Unlike Map#queryRenderedFeatures, this function returns all features that match
the requested parameters, whether they are rendered in the current style (i.e.,
visible) or not. The request domain includes all currently loaded vector tiles and
source GeoJSON tiles: this function does not check for tiles beyond the currently
visible viewport.

Hence, objects come from vector tiles or GeoJSON data that is converted to
tiles, objects’ geometry can be split or duplicated across tile boundaries. Thus,
objects can appear multiple times in the request results. Let’s have a look at the
below example: there is a highway passing through the request bounding box.
The request result will include those parts of the highway that are located inside
the map tiles covering the bounding box, even if the highway extends into other
tiles, and the part of the highway inside each map tile will be returned as a
separate object. Similarly, a point feature near a tile boundary can appear in
multiple tiles due to tile buffering.

// Find all features in one source layer in a vector source
var features = map.querySourceFeatures('your-source-id', {
sourceLayer: 'your-source-layer'

});

remove() Clean up and free all internal resources associated with the map. This includes
DOM elements, event bindings, web workers, and WebGL resources.

Use this method when you're done using the map and want to make sure it's no
longer consuming browser resources. After that, you should not call any other
methods on the map.

684

removeControl(contro
l)

Removes control elements from the map.

Options:
control:iControl an IControl element to be deleted

// Define a new navigation control.
var navigation = new mmrgl.NavigationControl();
// Add zoom and rotation controls to the map.
map.addControl(navigation);
// Remove zoom and rotation controls from the map.
map.removeControl(navigation);

685

removeFeatureState(
feature, key)

Removes the object state, returning it to its default behavior. If only
feature.source is specified, it will remove the state for all features from that
source. If feature.id is also specified, then it will remove all keys for the state of
that object. If a key is also specified, it removes only that key from the object
state. Features are identified by feature.id, which can be represented as any
number or string.

Options:
feature:Object object identifier. Feature objects returned from
Map#queryRenderedFeatures or event handlers can be used as object IDs.

Name Description

id:number|stri
ng

Unique feature identifier. Can be an integer or a string, but
only supports string values when the promoteId parameter is
applied to the source or either the string can be set to an
integral value.

source:string Vector or GeoJSON source ID for the feature.

sourceLayer:s
tring

(optional) Sources of vector tiles require sourceLayer.

key:string (optional) a key in the object state to be reset.

// Reset the entire state object for all features
// in the `my-source` source
map.removeFeatureState({
source: 'my-source'

});

// When the mouse leaves the `my-layer` layer,
// reset the entire state object for the
// feature under the mouse
map.on('mouseleave', 'my-layer', function(e) {
map.removeFeatureState({
source: 'my-source',
sourceLayer: 'my-source-layer',
id: e.features[0].id

});
});

// When the mouse leaves the `my-layer` layer,
// reset only the `hover` key-value pair in the
// state for the feature under the mouse
map.on('mouseleave', 'my-layer', function(e) {
map.removeFeatureState({
source: 'my-source',
sourceLayer: 'my-source-layer',
id: e.features[0].id

686

}, 'hover');
});

removeImage(id) Removes an image from the style. This can be an image from the original style
sprite, or any images added via the Map#addImage method.

Options:
id:string image ID.

// If an image with the ID 'cat' exists in
// the style's sprite, remove it.
if (map.hasImage('cat')) map.removeImage('cat');

removeLayer(id) Removes a layer with the given ID from the map style. If no such layer exists, an
error event is called.

Options:
id:string layer ID to be removed.

// If a layer with ID 'state-data' exists, remove it.
if (map.getLayer('state-data'))
map.removeLayer('state-data');

removeSource(id) Removes a source from the map style.

Options:
id:string source ID to be removed.

map.removeSource('bathymetry-data');

repaint Gets and sets a Boolean value indicating whether the map will continuously be
redrawn. This information is useful for performance analysis.

resetNorth(options?,
eventData?)

Rotates the map so that north is up (bearing 0°), with an animated transition.

Options:
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

resetNorthPitch(optio
ns?, eventData?)

Rotates and tilts the map so that north is up (azimuth 0°) and pitch is 0°, with an
animated transition.

Options:
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

687

resize(eventData?) Resizes the map to fit its container element.

Checks whether the map container size has changed and updates the map in
this case. This method should be called after the map's container is changed
programmatically, or when the map is displayed after being initially hidden with
CSS.

Options:
eventData:Object additional properties passed to the movestart , move , resize ,
and moveend events triggered by map size updates. This can be useful for
differentiating the event source (for example, user-triggered or
programmatically-triggered events).

// Resize the map when the map container is shown
// after being initially hidden with CSS.
var mapDiv = document.getElementById('map');
if (mapDiv.style.visibility === true) map.resize();

rotateTo(bearing,
options?,
eventData?)

Rotates the map to the specified bearing with an animated transition. Bearing is
the compass direction "up"; for example, a bearing of 90° sets the map so that
east is up.

Options:
bearing:number desired bearing
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

scrollZoom The map's ScrollZoomHandler that implements zooming in and out using the
scroll wheel or trackpad. For more information, see ScrollZoomHandler

setBearing(bearing,
eventData?)

Sets the map bearing (rotation). Bearing is the compass direction s "up"; for
example, a bearing of 90° sets the map so that east is up.

Equivalent to jumpTo({bearing: bearing}).

Options:
bearing:number desired bearing
eventData additional properties added to event objects that are called by this
method.

// rotate the map to 90 degrees
map.setBearing(90);

setCenter(center,
eventData?)

Sets the geographic center point of the map. Equivalent to jumpTo({center:
center}).

Options:
center:LngLatLike central point

688

eventData additional properties added to event objects that are called by this
method.

map.setCenter([-74, 38]);

setFeatureState(featu
re, state)

Sets the state of an object. The state of an object is a set of user-defined
key-value pairs that are assigned to an object. When using this method, the state
is concatenated with any existing key-value pairs in the object's state. Features
are identified through the feature.id attribute, which can be any number or string.

This method can only be used with sources that have a feature.id attribute. The
Feature.id attribute can be defined in three ways:

● for vector or GeoJSON sources, including the ID attribute in the original
data file.

● for vector sources or GeoJSON sources, use the promoteId option when
defining the source.

● for GeoJSON sources, use the generateId option to automatically assign
an ID based on the feature's index in the source data. If you change
feature data using map.getSource('some id').setData(..), you may need to
reapply the state with the updated ID values.

Options:
feature:Object object ID. Feature objects returned from
Map#queryRenderedFeatures or event handlers can be used as object
identifiers.

Name Description

id:number|string Unique feature identifier. Can be an integer or a string,
but only supports string values when the promoteId
parameter is applied to the source or either the string
can be set to an integral value.

source:string Vector or GeoJSON source ID for the feature.

sourceLayer:string (optional) Sources of vector tiles require sourceLayer.

state:Object a set of key-value pairs. Values must be valid JSON types.

// When the mouse moves over the `my-layer` layer, update
// the feature state for the feature under the mouse
map.on('mousemove', 'my-layer', function(e) {
if (e.features.length > 0) {
map.setFeatureState({
source: 'my-source',
sourceLayer: 'my-source-layer',
id: e.features[0].id,

}, {
hover: true

});

689

}
});

setFilter(layerId, filter,
options = {})

Sets the filter for the specified style layer.

The filters define which objects in a style layer are rendered from its source.
Any object for which the filter expression evaluates to true will be displayed on
the map. Those that are false will be hidden.

Use setFilter to display a subset of the original data.

To clear the filter, pass null or undefined as the second parameter.

Options:
layerId:string layer ID to which the filter will be applied.
filter: Array | null | undefined a filter that matches the style specification's filter
definition. If set to null or undefined, the function removes any existing filter from
the layer.
options:object default {} options object

Name Description

validate:boolean
default: true

You should check whether it matches the style
specification. Validation disabling stands for performance
optimization that should only be used if you have
previously validated the values to be passed to this
function.

// display only features with the 'name' property 'USA'
map.setFilter('my-layer', ['==', ['get', 'name'], 'USA']);

// display only features with five or more
'available-spots'
map.setFilter('bike-docks', ['>=', ['get',
'available-spots'], 5]);

// remove the filter for the 'bike-docks' style layer
map.setFilter('bike-docks', null);

setFreeCameraOptio
ns(options,
eventData?)

FreeCameraOptions provides direct access to the underlying camera object. For
backwards compatibility, a state set using this API must also be represented
using CameraOptions. Parameters are clamped into the valid range or discarded
as invalid if the conversion to pitch and bearing representation is ambiguous. For
example, an orientation might be invalid if it causes the camera to be upside
down, the quaternion to have zero length, or the stride to exceed the maximum
stride limit.

Options:
options:FreeCameraOptions options object

690

eventData additional properties added to event objects that are called by this
method.

setLayerZoomRange(
layerId, minzoom,
maxzoom)

Sets the zoom level for the specified style layer. The zoom level includes the
minimum zoom level and the maximum zoom level at which the layer will be
displayed.

For style layers that use vector sources, the style layers cannot be drawn
at zoom levels below the source layer's minimum zoom level because the
data does not exist at those zoom levels. If the source layer minimum
zoom level is higher than the value defined in the style layer, the style
layer will not display at all zoom levels within the zoom range.

Options:
layerId:string layer ID to which the zoom level will be applied.
minzoom:number minimum zoom level (0-24).
maxzoom:number maximum zoom level (0-24).

map.setLayerZoomRange('my-layer', 2, 5);

setLayoutProperty(la
yerId, name, value,
options = {})

Sets the layer property value on the specified style layer.

Options:
layerId:string layer ID to which the zoom level will be applied.
name:string property name
value:any property value. Must be of a type that matches this property, as
defined in the style specification.
options:object default {} options object

Name Description

validate:boolean
default: true

You should check whether it matches the style
specification. Validation disabling stands for
performance optimization that should only be used if
you have previously validated the values to be passed
to this function.

map.setLayoutProperty('my-layer', 'visibility', 'none');

691

setLight(light, options
= {})

Sets any combination of light values.

Options:
light:LightSpecification lighting properties. Must match the style specification.
options:object default {} options object

Name Description

validate:boolean
default: true

You should check whether it matches the style
specification. Validation disabling stands for
performance optimization that should only be used if you
have previously validated the values to be passed to this
function.

var layerVisibility = map.getLayoutProperty('my-layer',
'visibility');

setMaxBounds(boun
ds)

Sets or clears the geographic boundaries of the map.

Pan and zoom operations are limited by the above values. In case pan or zoom
display areas beyond these boundaries, the map instead displays the position
and zoom level as close to the operation request as possible while remaining
within these boundaries.

Options:
bounds:LngLatBoundsLike | null | undefined maximum limits to set. If null or
undefined, this function removes the map's maximum bounds.

// Define bounds that conform to the `LngLatBoundsLike`
object.
var bounds = [
[-74.04728, 40.68392], // [west, south]
[-73.91058, 40.87764] // [east, north]

];
// Set the map's max bounds.
map.setMaxBounds(bounds);

setMaxPitch(maxPitc
h)

Sets or clears the maximum map tilt. If the current map tilt is higher than the new
maximum value, the map will tilt towards the new maximum value.

Options:
maxPitch:number | null | undefined maximum tilt to set. If null or undefined,
the function removes the current maximum slope (sets it to 85)

692

setMaxZoom(maxZo
om)

Sets or clears the maximum map zoom level.

If the current map zoom level is higher than the new maximum value, the map
will zoom in to the new maximum value.

Options:
maxZoom:number | null | undefined is the maximum zoom level to set. If null
or undefined, the function removes the current maximum scale (sets it to 22).

map.setMaxZoom(18.75);

setMinPitch(minPitch) Sets or clears the minimum map pitch.

If the current chart pitch is below the new low value, the chart will tilt towards the
new low value.

Options:
minPitch:number | null | undefined is the minimum pitch to set (0-85). If null or
undefined, the function removes the current minimum pitch (i.e. sets it to 0)

setMinZoom(minZoo
m)

Sets or clears the minimum map zoom level. If the current map zoom level is
below the new minimum value, the map zooms in to the new minimum value.
It is not always possible to zoom out and reach the set minZoom. Other factors,
such as map height, may limit zoom. For example, if the map is 512 pixels high,
then zooming below zoom 0 will be impossible, no matter what minZoom is set
to.

Options:
minZoom:number | null | undefined is the minimum zoom level to set (-2 - 24).
If null or undefined, the function removes the current minimum scale (i.e., sets it
to -2).

map.setMinZoom(12.25);

setPadding(padding,
eventData?)

Sets the padding in pixels around the screen.

Equivalent to jumpTo({padding: padding}).

Options:
padding:PaddingOptions desired padding. Format: { left: number, right:
number, top: number, bottom: number }
eventData are additional properties added to event objects called by this
method.

// Sets a left padding of 300px, and a top padding of 50px
map.setPadding({ left: 300, top: 50 });

693

setPaintProperty(laye
rId, name, value,
options = {})

Sets the value of the paint property on the specified style layer.

Options:
layerId:string layer ID to which the zoom level will be applied.
name:string property name
value:any property value. Must be of a type that matches this property, as
defined in the style specification.
options:object default {} options object

Name Description

validate:boolean
default: true

You should check whether it matches the style
specification. Validation disabling stands for performance
optimization that should only be used if you have
previously validated the values to be passed to this
function.

map.setPaintProperty('my-layer', 'fill-color', '#faafee');

setPitch(pitch,
eventData?)

Sets the tilt height of the map. Equivalent to jumpTo({pitch: pitch}).

Options:
pitch:number pitch is measured in degrees (0-60°).
eventData additional properties to be added to event objects of events called by
this method.

setRenderWorldCopi
es(renderWorldCopie
s)

Sets the state of renderWorldCopies.

Options:
renderWorldCopies:boolean If true, then multiple copies will be rendered side
by side beyond -180 and +180 degrees of longitude. If set to false:

● when the map is enlarged so that no image of the world fills the entire
map container, there will be empty space beyond +180 and -180 degrees
of longitude.

● features that intersect +180 and -180 degrees of longitude will be cut in
two (one on the right edge and one on the left) at each zoom level.

undefined is regarded as true, null — as false.

map.setRenderWorldCopies(true);

694

setStyle(style,
options?)

Updates the map style object with the new value.

When using this option, if a style is already set and options.diff is set to true, the
map renderer will attempt to compare the given style with the current map state
and make only those changes necessary to make the map style match the
desired state. Changes to sprites (images used for icons and patterns) and
glyphs (fonts for label text) cannot be distinguished. If the sprites or fonts used in
the current style and this style differ in any way, the map renderer will force a full
update, removing the current style and creating this one from scratch.

Options:
style:StyleSpecification | string | null a JSON object corresponding to the
scheme described in the style specification, or a URL to such a JSON object.
options:Object options object

Name Description

diff:boolean
default: true

If false, force a full update, removing the current
style and creating this one instead of trying to
update it based on the diff.

localIdeographFontFamily:
string
default: 'sans-serif'

Defines a CSS font family for locally overriding
glyph generation within CJK Unified Ideographs,
Hiragana, Katakana, and Hangul Syllables.
Within this framework, the font settings from the
map style will be ignored, except for font-weight
keywords (light/regular/medium/bold). Set to
false to enable the font settings from the map
style for these glyph ranges. It forces a full
update.

map.setStyle("path-to-style");

setTerrain(terrain) Sets the style's terrain property.

Options:
terrain:TerrainSpecification properties to be set. Must match the style
specification. If set to null or undefined, the function removes the terrain.

map.addSource('mmr-dem', {
'type': 'raster-dem',
'url': 'path-to-source',
'tileSize': 512,
'maxzoom': 14

});
// add the DEM source as a terrain layer with exaggerated
height
map.setTerrain({ 'source': 'mmr-dem', 'exaggeration': 1.5
});

695

setZoom(zoom,
eventData?)

Sets the map zoom level. Equivalent to jumpTo({zoom: zoom}).

Options:
zoom:number zoom level to set (0-20).
eventData:Object additional properties that will be added to event objects called
by this method.

// Zoom to the zoom level 5 without an animated transition
map.setZoom(5);

showCollisionBoxes Gets and sets a Boolean value that specifies whether the map will display
margins around all symbols in the data source, indicating which symbols have
been rendered or which have been hidden due to collisions. This information is
useful for debugging.

showPadding Gets and sets a Boolean value indicating whether the map will render padding.

showTerrainWirefram
e

Gets and sets a Boolean value indicating whether the map will display wireframe
on top of the rendered terrain. Useful for debugging.

The wireframe is always red and is drawn only when the terrain is active.

map.showTerrainWireframe = true;

showTileBoundaries Gets and sets a Boolean value indicating whether the map will draw an outline
around each tile and the tile ID. These tile borders are useful for debugging.

The uncompressed file size of the first vector source is displayed in the upper left
corner of each tile next to the tile ID.

map.showTileBoundaries = true;

snapToNorth(options
?, eventData?)

Snaps the map so that north is up (bearing 0°) if the current bearing is close
enough to it (i.e. within the bearingSnap threshold).

Options:
options:AnimationOptions
eventData additional properties added to event objects that are called by this
method.

stop() Stops any animated transition.

touchPitch TouchPitchHandler of the map, which allows the user to pass the map using
touch gestures. For more information, see TouchPitchHandler.

touchZoomRotate TouchZoomRotateHandler of the map, which allows the user to zoom or rotate
the map using touch gestures. For more information, see
TouchZoomRotateHandler

696

triggerRepaint() Starts rendering one frame. Use this method with custom layers to redraw the
map when the layer changes. Only one frame will be rendered, even If this
method is called multiple times before visualizing the next frame.

map.triggerRepaint();

unproject(point) Returns LngLat representing the geographic coordinates corresponding to the
specified pixel coordinates. If the horizon is visible and the specified pixel is
above the horizon, returns LngLat which corresponds to the point on the horizon
closest to the point.

Options:
point:PointLike pixel coordinates for unproject

map.on('click', function(e) {
// When the map is clicked, get the geographic

coordinate.
var coordinate = map.unproject(e.point);

});

updateImage(id,
image)

Update an existing style image. This image can be displayed on the map like any
other icon in a style sprite using an image ID with an icon-image,
background-pattern, fill-pattern, or line -pattern).

Options:
id:string image ID
image:(HTMLImageElement | ImageBitmap | ImageData | {width: number,
height: number, data: (Uint8ClampedArray | Uint8ClampedArray)} |
StyleImageInterface) an image as HTMLImageElement, ImageData,
ImageBitmap, or an object with width, height, and data properties in the same
format as ImageData.

// If an image with the ID 'cat' already exists in the
style's sprite,
// replace that image with a new image,
'other-cat-icon.png'.
if (map.hasImage('cat')) map.updateImage('cat',
'./other-cat-icon.png');

version MMR GL JS version as specified in package.json

zoomIn(options?,
eventData?)

Increases the map scale by 1.

Options:
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

697

// zoom the map in one level with a custom animation
duration
map.zoomIn({duration: 1000});

zoomOut(options?,
eventData?)

Reduces the map scale by 1.

Options:
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

// zoom the map out one level with a custom animation
offset
map.zoomOut({offset: [80, 60]});

zoomTo(zoom,
options, eventData?)

Zooming the map to a given zoom level with an animated transition.

Options:
zoom:number zoom level for the transition.
options:AnimationOptions options object
eventData additional properties added to event objects that are called by this
method.

// Zoom to the zoom level 5 without an animated transition
map.zoomTo(5);

// Zoom to the zoom level 8 with an animated transition
map.zoomTo(8, {
duration: 2000,
offset: [100, 50]

});

698

Events

Name Description

boxzoomcancel Triggered when the user cancels the "box zoom" interaction or when the
bounding box does not meet the minimum size threshold. See
BoxZoomHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// the user cancels a "box zoom" interaction.
map.on('boxzoomcancel', function() {
console.log('A boxzoomcancel event occurred.');

});

boxzoomend Triggered when "box zoom" is finished. See BoxZoomHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after a "box zoom" interaction ends.
map.on('boxzoomend', function() {
console.log('A boxzoomend event occurred.');

});

boxzoomstart Triggered when «box zoom» is started. See BoxZoomHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before a "box zoom" interaction starts.
map.on('boxzoomstart', function() {
console.log('A boxzoomstart event occurred.');

});

699

click Triggered when pressed.

This event is compatible with the optional layerId parameter. If layerId
is included as the second argument to Map#on, the event listener will
only trigger when the point contains the visible part of the specified
layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('click', function(e) {
console.log('A click event has occurred at ' +

e.lngLat);
});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('click', 'poi-label', function(e) {
console.log('A click event has occurred on a visible

portion of the poi-label layer at ' + e.lngLat);
});

contextmenu Triggered when the right mouse button or context menu key is pressed inside
the map.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the right mouse button is
// pressed within the map.
map.on('contextmenu', function() {

console.log('A contextmenu event occurred.');
});

700

data Triggered when loading or changing any map data

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when map data loads or changes.
map.on('data', function() {
console.log('A data event occurred.');

});

dataloading Triggered when any map data (style, source, tile, etc.) starts loading or
changing asynchronously. All dataloadings are followed by a data or error
event.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when any map data begins loading
// or changing asynchronously.
map.on('dataloading', function() {
console.log('A dataloading event occurred.');

});

701

dbclick Triggered when pressed twice at the same point on the map in quick
succession.

This event is compatible with the optional layerId parameter. If layerId
is included as the second argument to Map#on, the event listener will
only trigger when the double-clicked point contains the visible part of
the specified layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('dblclick', function(e) {
console.log('A dblclick event has occurred at ' +

e.lngLat);
});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('dblclick', 'poi-label', function(e) {
console.log('A dblclick event has occurred on a visible

portion of the poi-label layer at ' + e.lngLat);
});

drag Triggered repeatedly during a drag-to-pan interaction. See DragPanHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// repeatedly during a "drag to pan" interaction.
map.on('drag', function() {
console.log('A drag event occurred.');

});

702

dragend Triggered when a drag-to-pan interaction ends. See DragPanHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a "drag to pan" interaction ends.
map.on('dragend', function() {
console.log('A dragend event occurred.');

});

dragstart Triggered when a drag-to-pan interaction begins. See DragPanHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a "drag to pan" interaction starts.
map.on('dragstart', function() {
console.log('A dragstart event occurred.');

});

error Triggered when an error occurs. This is the main GL JS error reporting
mechanism. We use event instead of throw to better adapt to asynchronous
operations. If the lisener is not bound to the error event, then the error will be
printed to the console.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when an error occurs.
map.on('error', function() {
console.log('A error event occurred.');

});

703

idle Triggered after the last frame drawn before the map enters the "idle" state:
● no camera transitions occur
● all currently requested tiles have been loaded
● all fade/transition animations have been completed

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before the map enters an "idle" state.
map.on('idle', function() {
console.log('A idle event occurred.');

});

load Triggered immediately after all the necessary resources were loaded and the
map was visually rendered for the first time.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the map has finished loading.
map.on('load', function() {
console.log('A load event occurred.');

});

704

mousedown Triggered when you click inside the map.

This event is compatible with the optional layerId parameter. If layerId
is included as the second argument to Map#on, the event listener will
only trigger when the cursor is clicked inside the visible part of the
specified layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('mousedown', function() {
console.log('A mousedown event has occurred.');

});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('mousedown', 'poi-label', function() {
console.log('A mousedown event has occurred on a

visible portion of the poi-label layer.');
});

mouseenter Triggered when the cursor enters the visible part of the specified layer beyond
that layer or beyond the map canvas.

This event can only be listened for when Map#on includes three
arguments, where the second argument specifies the desired layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('mouseenter', 'water', function() {
console.log('A mouseenter event occurred on a visible

portion of the water layer.');
});

705

mouseleave Triggered when the cursor leaves the visible part of the specified layer or
leaves the map canvas.

This event can only be listened for when Map#on includes three
arguments, where the second argument specifies the desired layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the pointing device leaves
// a visible portion of the specified layer.
map.on('mouseleave', 'water', function() {
console.log('A mouseleave event occurred.');

});

mousemove Triggered when the cursor moves while the cursor is inside the map. When
moving the cursor around the map, the event will trigger every time the cursor
changes its position on the map.

This event is compatible with the optional layerId parameter. If layerId
is included as the second argument to Map#on, the event listener will
only trigger when the cursor is inside the visible part of the specified
layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('mousemove', function() {
console.log('A mousemove event has occurred.');

});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('mousemove', 'poi-label', function() {
console.log('A mousemove event has occurred on a

visible portion of the poi-label layer.');
});

706

mouseout Triggered when the mouse cursor leaves the map canvas.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the pointing device leave's
// the map's canvas.
map.on('mouseout', function() {
console.log('A mouseout event occurred.');

});

mouseover Triggered when the mouse cursor moves inside the map. When moving the
cursor over a web page containing a map, the event will trigger every time it
enters the map or any child elements.

This event is compatible with the optional layerId parameter. If layerId
is included as the second argument to Map#on, the event listener will
only trigger when the cursor moves inside the visible part of the
specified layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('mouseover', function() {
console.log('A mouseover event has occurred.');

});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('mouseover', 'poi-label', function() {
console.log('A mouseover event has occurred on a

visible portion of the poi-label layer.');
});

707

mouseup Triggered when the mouse cursor is "released" within the map.

This event is compatible with the optional layerId parameter. If layerId is
included as the second argument to Map#on, the event listener will only
trigger when the cursor is released while inside the visible part of the specified
layer.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener
map.on('mouseup', function() {
console.log('A mouseup event has occurred.');

});

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener for a specific layer
map.on('mouseup', 'poi-label', function() {
console.log('A mouseup event has occurred on a visible

portion of the poi-label layer.');
});

move Triggered repeatedly during an animated transition from one view to another
as a result of user interaction or methods such as Map#flyTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// repeatedly during an animated transition.
map.on('move', function() {
console.log('A move event occurred.');

});

708

moveend Triggered immediately after the map completes a transition from one view to
another, either as a result of user interaction or methods such as
Map#jumpTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after the map completes a transition.
map.on('moveend', function() {
console.log('A moveend event occurred.');

});

movestart Triggered just before the map starts transitioning from one view to another,
either as a result of user interaction or methods such as Map#jumpTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before the map begins a transition
// from one view to another.
map.on('movestart', function() {
console.log('A movestart` event occurred.');

});

pitch Triggered repeatedly during map pitch (tilt) animation between one state and
another as a result of user interaction or methods such as Map#flyTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// repeatedly during a pitch (tilt) transition.
map.on('pitch', function() {
console.log('A pitch event occurred.');

});

709

pitchend Triggered immediately after the pitch (tilt) of the map ends as a result of user
interaction or methods such as Map#flyTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after a pitch (tilt) transition ends.
map.on('pitchend', function() {
console.log('A pitchend event occurred.');

});

pitchstart Triggered whenever the pitch (tilt) of the map starts to change as a result of
user interaction or methods such as Map#flyTo.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before a pitch (tilt) transition starts.
map.on('pitchstart', function() {
console.log('A pitchstart event occurred.');

});

remove Triggered immediately after the map is removed using Map.event:remove.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after the map is removed.
map.on('remove', function() {
console.log('A remove event occurred.');

});

710

render Triggered whenever the map is drawn on the screen and cause:
● changing map position, zoom, pitch or bearing
● changing map style
● changing the GeoJSON source
● loading a vector tile, GeoJSON file, glyph or sprite

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// whenever the map is drawn to the screen.
map.on('render', function() {
console.log('A render event occurred.');

});

resize Triggered immediately after the map is resized.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// immediately after the map has been resized.
map.on('resize', function() {
console.log('A resize event occurred.');

});

rotate Triggered repeatedly during a drag to rotate interaction. See
DragRotateHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// repeatedly during "drag to rotate" interaction.
map.on('rotate', function() {
console.log('A rotate event occurred.');

});

711

rotateend Triggered when a drag-to-rotate interaction ends. See DragRotateHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after a "drag to rotate" interaction ends.
map.on('rotateend', function() {
console.log('A rotateend event occurred.');

});

rotatestart Triggered when a drag-to-rotate interaction starts. See DragRotateHandler

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before a "drag to rotate" interaction starts.
map.on('rotatestart', function() {
console.log('A rotatestart event occurred.');

});

sourcedata Triggered when loading or changing one of the map sources, including when
loading or changing a tile belonging to the source.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when one of the map's sources loads or changes.
map.on('sourcedata', function() {
console.log('A sourcedata event occurred.');

});

712

sourcedataloadin
g

Triggered when one of the map sources starts loading or changing
asynchronously. All sourcedataloading events are followed by sourcedata or
error event. For more information, see MapDataEvent

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// map's sources begin loading or
// changing asyncronously.
map.on('sourcedataloading', function() {
console.log('A sourcedataloading event occurred.');

});

styledata Triggered when the map style is loaded or changed. For more information,
see MapDataEvent

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the map's style loads or changes.
map.on('styledata', function() {
console.log('A styledata event occurred.');

});

styledataloading Triggered when the map style starts to load or change asynchronously. All
styledataloading events are followed by a styledata or error event. For more
information, see MapDataEvent

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// map's style begins loading or
// changing asyncronously.
map.on('styledataloading', function() {
console.log('A styledataloading event occurred.');

});

713

styleimagemissin
g

Triggered when there is no icon or template required by the style. A missing
image can be added using Map#addImage to prevent the image from being
skipped. This event can be used to dynamically generate icons and templates.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// an icon or pattern is missing.
map.on('styleimagemissing', function() {
console.log('A styleimagemissing event occurred.');

});

touchcancel Triggered when a touchcancel event occurs on the map.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a touchcancel event occurs within the map.
map.on('touchcancel', function() {
console.log('A touchcancel event occurred.');

});

touchend Triggered when a touchend event occurs on the map.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a touchstart event occurs within the map.
map.on('touchstart', function() {
console.log('A touchstart event occurred.');

});

714

touchmove Triggered when a touchmove event occurs on the map.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a touchmove event occurs within the map.
map.on('touchmove', function() {
console.log('A touchmove event occurred.');

});

touchstart Triggered when a touchstart event occurs on the map.

Parameters:
data:MapMouseEvent

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a touchstart event occurs within the map.
map.on('touchstart', function() {
console.log('A touchstart event occurred.');

});

webglcontextlost Triggered when the WebGL context is lost.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the WebGL context is lost.
map.on('webglcontextlost', function() {
console.log('A webglcontextlost event occurred.');

});

715

webglcontextrest
ored

Triggered when the WebGL context is restored.

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when the WebGL context is restored.
map.on('webglcontextrestored', function() {
console.log('A webglcontextrestored event occurred.');

});

wheel Triggered when the map is scrolled by the wheel

Parameters:
data:MapMouseEvent

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// when a wheel event occurs within the map.
map.on('wheel', function() {
console.log('A wheel event occurred.');

});

zoom Triggered repeatedly during an animated transition from one zoom level to
another as a result of user interaction or methods such as Map#flyTo

Parameters:
data:(MapMouseEvent | MapTouchEvent)

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// repeatedly during a zoom transition.
map.on('zoom', function() {
console.log('A zoom event occurred.');

});

716

zoomend Triggered immediately after the map has completed transitioning from one
zoom level to another, either as a result of user interaction or methods such
as Map#flyTo.

Parameters:
data:(MapMouseEvent | MapTouchEvent)

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just after a zoom transition finishes.
map.on('zoomend', function() {
console.log('A zoomend event occurred.');

});

zoomstart Triggered just before the map starts transitioning from one zoom level to
another, either as a result of user interaction or methods such as Map#flyTo.

Parameters:
data:(MapMouseEvent | MapTouchEvent)

// Initialize the map
var map = new mmrgl.Map({ // map options });
// Set an event listener that fires
// just before a zoom transition starts.
map.on('zoomstart', function() {
console.log('A zoomstart event occurred.');

});

717

2. Properties and options

accessToken:string

Map access token — the event type.
src/index.js
Example:
mmrgl.accessToken = myAccessToken
baseApiUrl:string

Initial API URL, which is used to get tiles, styles, sprites and glyphs
src/index.js
Example:
mmrgl.baseApiUrl = 'https://geo.rustore.ru/api';
workerCount:number

Number of web workers per page with GL JS maps. Half the number of cores (limited to 6) is set
by default. Make sure you have set this parameter before initializing the map.
src/index.js
Example:

mmrgl.workerCount = 2;
maxParallelImageRequests:number

The maximum number of images (raster tiles, sprites, icons) to load in parallel. Affects
performance in raster maps. 16 by default.
src/index.js
Example:

mmrgl.maxParallelImageRequests = 10;

supported:function

Checks browser support for GL JS
src/index.js
Example:

if (!mmrgl.supported()) {
alert('Your browser does not support MMR GL');

}

version:string

Current build version MMR GL
src/index.js
Example:

718

console.log(mmrgl.version);
//> 1.2.3;

setRTLTextPlugin:function

Installs a plugin for RTL support. Required for Arabic and Hebrew languages support.
src/index.js

Parameters:
pluginURL:string — path to RTL plugin.
callback:function(error:object) — this function is called in case of an error.
lazy:boolean — lazy loading.
Example:

mmrgl.setRTLTextPlugin(pluginUrl, function(error) {
if (error) {

console.log('something was wrong', error);
} else {

console.log('rtl-text-plugin loaded successfully');
}

}, true);

getRTLTextPluginStatus:function

It is used to get RTL plug-in status. Plug-in status can be: unavailable (not requested or
removed), loading, loaded or error. An error occurs If the status is loaded and the plug-in is
requested again.
src/index.js
Example:

const pluginStatus = mmrgl.getRTLTextPluginStatus();

clearStorage:function

Clears cacheStorage which can store tiles cache
src/index.js
Parameters:
callback:function(error:object) —path to RTL plug-in.
Example:

mmrgl.clearStorage()

AnimationOptions (parameter group)

719

Animation options (which are used in the following methods: Map#panBy, Map#easeTo) keep
control over duration and animation smoothing function (easing function). All options are
optional.

src/ui/camera.js

Parameters:
duration:number — animation duration (in milliseconds).
easing:function — function that takes a time value in the range 0..1 and returns a number,
where 0 is the initial state and 1 is the final state.
offset:PointLike — center shift from the real map center at the end of the animation.
animate:boolean — if false, animations will be disabled.
essential:boolean — if true, then the animation is considered essential and will not be affected
by prefers-reduced-motion (reduced motion is preferred).

CameraOptions (parameter group)

Camera options (used in the methods: Map#jumpTo, Map#easeTo and Map#flyTo) keep control
over location (starting position), zoom (scaling), bearing and pitch of the camera. All options are
optional.

src/ui/camera.js

Parameters:
center:LngLatLike — map center.
zoom:number — map (scale) distance.
bearing:number — bearing is compass direction, which is "up". For example, bearing: 90 sets
the map so that east is up.
pitch:number — desired map tilt in degrees. The pitch angle is measured with respect to the
horizon, measured in degrees(0 - 60°). For example, pitch: 0 makes it appear to be looking
straight down at the map, while pitch: 60 tilts the user's perspective toward the horizon.
Increased tilt value is often used to display 3D objects.
around:LngLatLike — if zoom is set, around specifies the point around which the zoom is
centered.
padding:PaddingOptions — applied to each side of the viewport to shift the vanishing point
(relevant when the map is tilted).

PaddingOptions (parameter group)
Padding options (used in methods: Map#fitBounds, Map#fitScreenCoordinates and
Map#setPadding). Adjust these options to set the amount of pixel padding added to the edges
of the map. All object properties must be non-negative integers.

src/ui/camera.js

Parameters:
top:number — padding in pixels on the top of the map.
bottom:number — padding in pixels on the bottom of the map.
left:number — padding in pixels on the left of the map.

720

right:number — padding in pixels on the right of the map.
Examples:

var bbox = [[-79, 43], [-73, 45]];
map.fitBounds(bbox, {
padding: {top: 10, bottom:25, left: 15, right: 5}

});

var bbox = [[-79, 43], [-73, 45]];
map.fitBounds(bbox, {
padding: 20

});

RequestParameters (parameter group)
Object that is returned by the callback method Map.options.transformRequest

src/ui/ajax.js

Parameters:
url:string — request URL.
headers:object — headers sent with the request.
method:string — request method 'GET' | 'POST' | 'PUT'.
type:string — return type of request body (body response) 'string' | 'json' | 'arrayBuffer'.
credentials:string — 'same-origin' | 'include' Use 'include' to send cookies in cross domain
requests.
collectResourceTiming:boolean — if true, the Resource Timing API information will be
available for requests made by GeoJSON and Vector Tile (this information is not normally
available from the main JavaScript thread). The information will be returned in the
ResourceTiming property.
Example:

transformRequest: function(url, resourceType) {
if (resourceType === 'Source' && url.indexOf('http://myHost') >

-1) {
return {

url: url.replace('http', 'https'),
headers: { 'my-custom-header': true },
credentials: 'include' // Include cookies for

cross-origin requests
}

}
};

StyleImageInterface (specification for developers)

721

It is not a method or a class. It is an interface for dynamically generated images.
Images that implement this interface can be redrawn for each frame. They can be used to
animate icons and patterns, or to make them react to user input data. Images can implement
the StyleImageInterface#render method. This method is called frame by frame.

src/style/style_image.js

Parameters:
width:number
height:number
data:(Uint8Array|Uint8ClampedArray)
Example:

var flashingSquare = {
width: 64,
height: 64,
data: new Uint8Array(64 * 64 * 4),

onAdd: function(map) {
this.map = map;

},

render: function() {
// keep repainting while the icon is on the map
this.map.triggerRepaint();

// alternate between black and white based on the time
var value = Math.round(Date.now() / 1000) % 2 === 0 ? 255 :

0;

// check if image needs to be changed
if (value !== this.previousValue) {

this.previousValue = value;

var bytesPerPixel = 4;
for (var x = 0; x < this.width; x++) {

for (var y = 0; y < this.height; y++) {
var offset = (y * this.width + x) * bytesPerPixel;
this.data[offset + 0] = value;
this.data[offset + 1] = value;
this.data[offset + 2] = value;
this.data[offset + 3] = 255;

722

}
}

// return true to indicate that the image changed
return true;

}
}

}

map.addImage('flashing_square', flashingSquare);

CustomLayerInterface (specification for developers)

It is not a method or a class. It corresponds to a layer style customization interface.
Custom layers allow the user to render directly into the GL context of the map using the camera.
These layers can be added between any regular layers using Map#addLayer.

Custom layers must have a unique identifier and type "custom". They must implement render
and may implement prerender, onAdd and onRemove. They can trigger a render with
Map#triggerRepaint and should handle Map.event:webglcontextlost and
Map.event:webglcontextrestored appropriately.

The RenderingMode property determines whether the layer will be rendered as a "2d" or "3d"
map layer:
● «RenderingMode»: «3d» — to use the depth buffer and share it with other layers.
● «RenderingMode»: «2d» — to add a layer without depth. If you need to use a depth buffer
for the "2d" layer, you must use an offscreen framebuffer and CustomLayerInterface#prerender

src/style/style_layer/custom_style_layer.js

Parameters:
id:string — unique ID layer.
type:string — layer type, must be «custom».
renderingMode:string — «3d» or «2d», by default «2d».

Example:

// Custom layer implemented as ES6 class
class NullIslandLayer {

constructor() {
this.id = 'null-island';
this.type = 'custom';
this.renderingMode = '2d';

}

723

onAdd(map, gl) {
const vertexSource = `

uniform mat4 u_matrix;
void main() {

gl_Position = u_matrix * vec4(0.5, 0.5, 0.0, 1.0);
gl_PointSize = 20.0;

}`;

const fragmentSource = `
void main() {

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}`;

const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertexSource);
gl.compileShader(vertexShader);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragmentSource);
gl.compileShader(fragmentShader);

this.program = gl.createProgram();
gl.attachShader(this.program, vertexShader);
gl.attachShader(this.program, fragmentShader);
gl.linkProgram(this.program);

}

render(gl, matrix) {
gl.useProgram(this.program);
gl.uniformMatrix4fv(gl.getUniformLocation(this.program,

"u_matrix"), false, matrix);
gl.drawArrays(gl.POINTS, 0, 1);

}
}

map.on('load', function() {
map.addLayer(new NullIslandLayer());

});

prewarm:function

724

Performs "prewarm" of all resources (for example, initializes web workers) to reduce the time to
load the map. If mmrgl.workerUrl and mmrgl.workerCount are used, they must be defined
before calling prewarm().

By default, these resources are managed automatically, and they are initialized as needed (lazy)
when the map is first created. When prewarm() is called, resources will be pre-created and will
not be cleared when the last map is removed from the page. This allows them to be reused by
new map instances. They can be cleared manually by calling the
mmrgl.clearPrewarmedResources() function. This is only necessary if your web page remains
active but stops using maps entirely.

This is useful when using maps in a Single Page Application (SPA) where the user will be
navigating between different pages/screens, which can result in maps being instantiated and
destroyed all the time.

src/index.js

Example:

mmrgl.prewarm()

clearPrewarmedResources:function

Clears resources that were previously created by mmrgl.prewarm(). Note that this is usually not
necessary. You should only call this function if you expect the user of your application to not
return to viewing the map at any point in your application.

src/index.js

Example:

mmrgl.clearPrewarmedResources()

725

3. Tags and controls
Marker

Creating a marker

src/ui/marker.js

Parameters

Name Type Description

element HTMLElement Use a DOM element as a marker. By default, a
light blue, droplet-shaped svg marker is used (light
blue, droplet-shaped).

anchor string
default: 'center'

Specifies the position of the icon relative to its
center. Available values are 'center', 'top', 'bottom',
'left', 'right', 'top-left', 'top-right', 'bottom-left' and
'bottom-right'.

offset PointLike The shift is applied relative to the element center.
Negative values point to the left and top.

color string
default:
'#3FB1CE'

If options.element is not specified, then that color
will be used. The default color is light blue.

scale number
default: 1

If options.element is not specified, then this scale
will be used. By default, the scale is 41px high and
27px wide.

draggable boolean
default: false

If true, then you can drag markers to a new
location (drag and drop)

clickTolerance number
default: 0

Maximum number of pixels that the user can point
to while clicking on the marker for it to be
considered a valid click (as opposed to dragging
the handle). The map's clickTolerance inheritance
is used by default.

rotation number
default: 0

Rotation angle of the marker relative to its
corresponding rotationAlignment. A positive value
will rotate the marker clockwise.

pitchAlignment string
default: 'auto'

● 'map' aligns the marker to the map.
● 'viewport' aligns the marker on the screen
(viewport).
● 'auto' automatically matches
rotationAlignment value

726

rotationAlignmen
t

string
default: 'auto'

● 'map' aligns the rotation of the marker relative
to the map, keeping the bearing when the map
rotates.
● 'viewport' aligns the rotation of the marker
relative to the screen (viewport) regardless of the
map rotation.
● 'auto' equivalent to screen (viewport)

Example:
var marker = new mmrgl.Marker()
.setLngLat([30.5, 50.5])
.addTo(map);

// Set options
var marker = new mmrgl.Marker({
color: "#FFFFFF",
draggable: true

}).setLngLat([30.5, 50.5])
.addTo(map);

Methods

Name Description

addTo(map) Attaches a marker to a map object.

Example:
var marker = new mmrgl.Marker()
.setLngLat([30.5, 50.5])
.addTo(map); // add the marker to the map

getElement() Returns the marker HTML element.

getLngLat() Get the geographic location of the marker.

The longitude of the result may differ by a multiple of
360° from the longitude previously set by setLngLat
because the Marker wraps the anchor longitude over the
world copies to keep the marker on the screen.

getOffset() Returns the marker offset.

getPitchAlignment() Returns the market’s current pitchAlignmen property.

727

getPopup() Returns the popup instance associated with the Marker.
Example:
var marker = new mmrgl.Marker()
.setLngLat([0, 0])
.setPopup(new
mmrgl.Popup().setHTML("<h1>Hello
World!</h1>"))
.addTo(map);

console.log(marker.getPopup()); // return
the popup instance

getRotation() Returns the current marker rotation angle (in degrees).

getRotationAlignment() Returns the marker's current rotationAlignment property.

isDraggable() Returns true if the marker is draggable

remove() Removes a marker from the map
Example:
var marker = new
mmrgl.Marker().addTo(map);
marker.remove();

setDraggable(shouldBeDragga
ble)

Specifies the draggable property and marker
functionality

Parameters:
shouldBeDraggable:boolean (by default false) Turns
on/off the drag and drop feature

728

setLngLat(lnglat) Sets the geographic position of the marker and moves it.

Parameters:
lnglat:LngLat where the marker should be placed.

Example:
// Create a new marker, set the longitude
and latitude, and add it to the map
new mmrgl.Marker()
.setLngLat([-65.017, -16.457])
.addTo(map);

setOffset(offset) Sets marker offset

Parameters:
offset:PointLike an offset in pixels to apply relative to
the element's center. Negative values point to the left
and up.

setPitchAlignment(alignment?) Sets the marker's pitchAlignment property.

Parameters:
alignment:string sets the marker's pitchAlignment
property. If "auto", it will automatically match the
rotationAlignment.

setPopup(popup) Binds the popup to a handle.

Parameters:
popup:Popup an instance of the popup class. If the
value is undefined or null, then any popup set on this
marker instance will be cleared.

Example:
var marker = new mmrgl.Marker()
.setLngLat([0, 0])
.setPopup(new

mmrgl.Popup().setHTML("<h1>Hello
World!</h1>")) // add popup
.addTo(map);

setRotation(rotation) Sets the marker's rotation property.

Parameters:

729

rotation:number (by default 0) Marker rotation angle
(clockwise, in degrees) relative to the corresponding
Marker#setRotationAlignment setting

setRotationAlignment(alignme
nt)

Sets the marker's rotationAlignment property.

Parameters:
alignment:string (by default 'auto') Sets the marker's
rotationAlignment property.

togglePopup() Opens or closes the popup instance associated with the
handle, depending on the current state of the popup

Example:

var marker = new mmrgl.Marker()
.setLngLat([0, 0])
.setPopup(new

mmrgl.Popup().setHTML("<h1>Hello
World!</h1>"))
.addTo(map);

marker.togglePopup(); // toggle popup
open or closed

Events

Name Description

drag Triggered during a drag-and-drop

dragend Triggered when the drag-and-drop is finished

dragstart Triggered when a drag-and-drop is started

Popup

Creates a popup window.

src/ui/popup.js

Options

Name Type Description

730

maxWidth string
default:
'240px'

A string that sets the maximum width CSS property of the popup
window, such as '300px'. To ensure that the popup window size matches
its content, set this property to "none" . Available values are listed here:
https://developer.mozilla.org/en-US/docs/Web/CSS/max-width

anchor string
default:
'bottom'

Specifies the position of the icon relative to its center. Available values
are 'center', 'top', 'bottom', 'left', 'right', 'top-left', 'top-right', 'bottom-left'
and 'bottom-right'.

offset number |
PointLike
| Object

Pixel offset applied to the popup window, specified as:
● number, indicates the distance from the popup location
● PointLike specifying a constant offset
● point object {'center': PointLike, 'top': PointLike...}, specifies an

offset for each anchor position. Negative offsets point to the left
and up.

className string Container class name

focusAfterOpen boolean
default:
true

If true, once a popup window appears, an attempt will be made to set the
focus (cursor) to the first element inside the window, for example
<input/>.

closeOnMove boolean
default:
false

If true, then the popup will be closed when the map is moved.

closeOnClick boolean
default:
true

If true, then the popup will be closed when the map is clicked.

closeButton boolean
default:
true

If true, a close button will appear in the upper right corner of the popup.

Example:

var markerHeight = 50, markerRadius = 10, linearOffset = 25;
var popupOffsets = {
'top': [0, 0],
'top-left': [0,0],
'top-right': [0,0],
'bottom': [0, -markerHeight],
'bottom-left': [linearOffset, (markerHeight - markerRadius +

linearOffset) * -1],
'bottom-right': [-linearOffset, (markerHeight - markerRadius +

linearOffset) * -1],
'left': [markerRadius, (markerHeight - markerRadius) * -1],
'right': [-markerRadius, (markerHeight - markerRadius) * -1]

731

https://developer.mozilla.org/en-US/docs/Web/CSS/max-width

};
var popup = new mmr
gl.Popup({offset: popupOffsets, className: 'my-class'})
.setLngLat(e.lngLat)
.setHTML("<h1>Hello World!</h1>")
.setMaxWidth("300px")
.addTo(map);

Methods

Name Description

addClassName(classN
ame)

Adds a CSS class to the popup element.

Options:
className:string A non-empty string with the class name to
add to popup

Example:

let popup = new mmrgl.Popup()
popup.addClassName('some-class')

addTo(map) Adds a popup window to the map.

Example:

new mmrgl.Popup()
.setLngLat([0, 0])
.setHTML("<h1>Null Island</h1>")
.addTo(map);

getElement() Returns an HTML element of the popup window.

Example:

// Change the `Popup` element's font size
var popup = new mmrgl.Popup()
.setLngLat([-96, 37.8])
.setHTML("<p>Hello World!</p>")
.addTo(map);

var popupElem = popup.getElement();
popupElem.style.fontSize = "25px";

getLngLat() Returns the geographic location of the popup anchor.

The resulted longitude may differ by a multiple of 360° from the
longitude previously set by setLngLat because the Popup wraps

732

the anchor longitude over the world copies to keep the popup on
the screen.

getMaxWidth() Returns the maximum popup width.

isOpen() Returns true if the popup is open, false if it is closed.

remove() Removes the popup from the map it was added to.
Example:

var popup = new mmrgl.Popup().addTo(map);
popup.remove();

removeClassName(cla
ssName)

Removes the CSS class from the container's popup element.

Options:
className:string A non-empty string with the name of the
CSS class to remove from the popup container

Example:

let popup = new mmrgl.Popup()
popup.removeClassName('some-class')

setDOMContent(htmlN
ode)

Sets the popup content to an element provided as a DOM node.

Options:
htmlNode:Node The DOM node to be used as the popup
content.

Example:

// create an element with the popup content
var div = window.document.createElement('div');
div.innerHTML = 'Hello, world!';
var popup = new mmrgl.Popup()
.setLngLat(e.lngLat)
.setDOMContent(div)
.addTo(map);

733

setHTML(html) Sets the content of the popup to HTML code provided as a
string.

This method does not perform HTML filtering or sanitization and
should only be used with trusted content. Consider
Popup#setText if the content is an unreliable text string.

Options:
html:string A string representing the HTML popup content.

Example:

var popup = new mmrgl.Popup()
.setLngLat(e.lngLat)
.setHTML("<h1>Hello World!</h1>")
.addTo(map);

setLngLat(lnglat) Sets the geographic location of the popup anchor and moves it.
Replaces trackPointer().

Options:
lnglat:LngLatLike geographic location to set as the popup
anchor.

setMaxWidth(maxWidt
h)

Sets the maximum popup width. This sets the max-width CSS
property. Available values are listed below:
https://developer.mozilla.org/en-US/docs/Web/CSS/max-width

Options:
maxWidth:string string representing the maximum width value.

setOffset(offset?) Sets a popup offset.

Options:
offset:Offset popup offset

setText(text) Sets the popup content as a string of text.

This function creates a text node in DOM, so it cannot embed
raw HTML. Use this method to protect against XSS if the popup
content is user-provided.

Options:
text:string popup text content.

Example:

var popup = new mmrgl.Popup()
.setLngLat(e.lngLat)
.setText('Hello, world!')

734

https://developer.mozilla.org/en-US/docs/Web/CSS/max-width

.addTo(map);

toggleClassName(clas
sName)

Adds or removes the given CSS class in the popup container,
depending on whether the class is currently in the container.

Options:
className:string not-empty string with CSS class name to
add/remove

Example:

let popup = new mmrgl.Popup()
popup.toggleClassName('toggleClass')

trackPointer() Tracks the popup anchor to the cursor position on screens using
the pointer (it will be hidden on touch screens). Replaces
setLngLat behavior. For most use cases, it is recommended to
set closeOnClick and closeButton to false.

Example:
var popup = new mmrgl.Popup({ closeOnClick:
false, closeButton: false })
.setHTML("<h1>Hello World!</h1>")
.trackPointer()
.addTo(map);

Events

Name Description

close Triggered when the popup is closed manually or automatically.

Example:
// Create a popup
var popup = new mmrgl.Popup();
// Set an event listener that will fire
// any time the popup is closed
popup.on('close', function(){
console.log('popup was closed');

});

735

open Triggered when a popup window is opened manually or automatically.

Example:
// Create a popup
var popup = new mmrgl.Popup();
// Set an event listener that will fire
// any time the popup is opened
popup.on('open', function(){
console.log('popup was opened');

});

IControl (Developer specification)

IControl corresponds to an interface for interactive controls added to the map. This is a
specification for developers: it is neither a method nor a class.

Controls must implement onAdd and onRemove and there must be <div> as well. Add the
mmrgl-ctrl class to use the MMR GL JS control style.

src/ui/map.js

Example:
// Control implemented as ES6 class
class HelloWorldControl {

onAdd(map) {
this._map = map;
this._container = document.createElement('div');
this._container.className = 'mmrgl-ctrl';
this._container.textContent = 'Hello, world';
return this._container;

}

onRemove() {
this._container.parentNode.removeChild(this._container);
this._map = undefined;

}
}

// Control implemented as ES5 prototypical class
function HelloWorldControl() { }

HelloWorldControl.prototype.onAdd = function(map) {
this._map = map;

736

this._container = document.createElement('div');
this._container.className = 'mmrgl-ctrl';
this._container.textContent = 'Hello, world';
return this._container;

};

HelloWorldControl.prototype.onRemove = function () {
this._container.parentNode.removeChild(this._container);
this._map = undefined;

};

Methods

Name Description

getDefaultPosition() Whenever so required, specify a default position for this control. If this
method is implemented and Map#addControl is called without a position
parameter, then the value returned by getDefaultPosition will be used as
the control's position.

onAdd(map) Register the control on the map and let it register the event listener and
resources. This method is called by Map#addControl internally.

onRemove(map) Unregister the control from the map and give it a chance to detach the
event listener and resources. This method is called by
Map#removeControl internally.

NavigationControl

NavigationControl contains zoom buttons and a compass.

src/ui/control/navigation_control.js

Options

Name Type Description

showCompass boolean
default: true

If true, then the compass button is displayed.

showZoom boolean
default: true

If true, the in and zoom out buttons are displayed.

visualizePitch boolean
default: false

If true, then the step is rendered by rotating the x-axis.

737

Example:

var nav = new mmrgl.NavigationControl();
map.addControl(nav, 'top-left');

GeolocateControl

GeolocateControl features a button that uses the browser's geolocation API to locate the user
on a map.

However, not all browsers support geolocation, and some users may choose to disable this
feature. Geolocation support for modern browsers, including Chrome, requires sites to be
served over HTTPS. If geolocation support is not available, then GeolocateControl will be
displayed as disabled.

The zoom level will depend on the geolocation accuracy provided by the device.
GeolocateControl has two modes. If trackUserLocation is false (the default), then the control
acts like a button: when clicked, it sets the map's camera to the user's location. If the user
moves, the map is not updated. This is most suitable for the desktop. If trackUserLocation is
true, then the control acts as a toggle button that tracks the user's movement. In this mode, the
GeolocateControl has three interaction states:

● 'active': The map camera updates automatically as the user's location changes, keeping
the location point in the center.

● 'passive': The user's location point is automatically updated, but the map camera is not.
It occurs when the user initiates a map move.

● 'disabled': Occurs if Geolocation is not available, disabled, or restricted.

These interaction states cannot be automatically controlled, they are rather set based on user
interaction.

src/ui/control/geolocate_control.js

Options

Name Type Description

positionOptions Object
default: {

enableHighAccurac
y:false,
timeout:6000
}

PositionOptions geolocation API object.

738

fitBoundsOptions Object
default: {
maxZoom:15
}

Map#fitBounds is an Options object that is used
when the map is moved and scaled to the user's
location. The default is maxZoom 15 to limit the
map zoom to very precise locations.

trackUserLocation boolean
default: false

If true, the Geolocate control becomes a switch
and once it is active the map will receive updates
about the user's location as it changes.

showAccuracyCircle boolean
default: true

By default, if showUserLocation is set to true, a
transparent circle will be drawn around the user's
location, indicating the accuracy of the user's
location (95% accuracy). Set to false to disable.
Always disabled when showUserLocation is false.

showUserLocation boolean
default: true

By default, the point will be displayed on the map
at the user's location. Set to false to disable.

Example:
map.addControl(new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

}));

Methods

Name Description

trigger Program it to request and move the map to the user's location.

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});
// Add the control to the map.
map.addControl(geolocate);
map.on('load', function() {
geolocate.trigger();

});

739

Events

Name Description

error Triggered by Geolocation API updates, which was returned as an error.

Options:
data:PositionError returned PositionError object from the callback to
Geolocation.getCurrentPosition() or Geolocation.watchPosition().

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});

// Add the control to the map.
map.addControl(geolocate);
// Set an event listener that fires
// when an error event occurs.
geolocate.on('error', function() {
console.log('An error event has occurred.')

});

740

geolocate Triggered by Geolocation API updates, which was returned as a successful
result.

Options:
data:Position returned Position object from a call to
Geolocation.getCurrentPosition() or Geolocation.watchPosition().

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});
// Add the control to the map.
map.addControl(geolocate);
// Set an event listener that fires
// when a geolocate event occurs.
geolocate.on('geolocate', function() {
console.log('A geolocate event has occurred.')

});

outofmaxbounds Triggered by Geolocation API updates, which was returned as a successful
result, but the user's position is beyond maxBounds of the map.

Options:
data:Position returned Position object from a call to
Geolocation.getCurrentPosition() or Geolocation.watchPosition().

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});
// Add the control to the map.
map.addControl(geolocate);
// Set an event listener that fires
// when an outofmaxbounds event occurs.
geolocate.on('outofmaxbounds', function() {
console.log('An outofmaxbounds event has occurred.')

});

741

trackuserlocationend Triggered when the Geolocate control enters the background state. This
happens when the user changes the camera while active. This only applies if
trackUserLocation is set to true. In the background, a point on the map will
update with location updates, but the camera will not be updated.

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});
// Add the control to the map.
map.addControl(geolocate);
// Set an event listener that fires
// when a trackuserlocationend event occurs.
geolocate.on('trackuserlocationend', function() {
console.log('A trackuserlocationend event has

occurred.')
});

trackuserlocationstart Triggered when the Geolocate control becomes active, or when the first time a
successful geolocation API position is received for the user (followed by the
geolocate event), or when the user presses the geolocate button while in the
background, which uses the last known position to re-center map and enter the
active state (the geolocate event will only occur if the user's location changes).

Example:
// Initialize the geolocate control.
var geolocate = new mmrgl.GeolocateControl({
positionOptions: {
enableHighAccuracy: true

},
trackUserLocation: true

});
// Add the control to the map.
map.addControl(geolocate);
// Set an event listener that fires
// when a trackuserlocationstart event occurs.
geolocate.on('trackuserlocationstart', function() {
console.log('A trackuserlocationstart event has

occurred.')
});

ScaleControl

742

ScaleControl control displays the ratio of the map distance to the corresponding ground
distance.

src/ui/control/scale_control.js

Options

Name Type Description

maxWidth number
default: '100'

Maximum length of the zoom control, in pixels.

unit string
default: 'metric'

Distance unit ('imperial', 'metric' or 'nautical').

Example:
var scale = new mmrgl.ScaleControl({

maxWidth: 80,
unit: 'imperial'

});
map.addControl(scale);
scale.setUnit('metric')

Methods

Name Description

setUnit(unit) Set the distance unit on the scale
Options:
unit:Unit The unit of distance measurement ("imperial" , "metric" or
"nautical").

FullscreenControl

FullscreenControl contains a button to switch the map to full screen mode and back.
src/ui/control/fullscreen_control.js

Options

Name Type Description

container HTMLElement container — DOM element to open in full screen mode. By
default, the map container will be used for full screen mode.

Example:

map.addControl(new mmrgl.FullscreenControl({container:
document.querySelector('body')

743

}));

744

4. Geography and geometry
LngLat
LngLat object consists of longitude and latitude (in degrees). These coordinates are based on
the WGS84 standard (EPSG:4326). MMR GL uses longitude and latitude coordinate order (as
opposed to latitude and longitude values) according to the GeoJSON specification. Note that
any MMR GL method that takes an LngLat object as an argument or option can also take an
array of two numbers and perform an implicit conversion. This flexible type is documented as
LngLatLike.

src/geo/lng_lat.js

Options

lng:number — longitude in degrees
lat:number — latitude in degrees

Example:

var ll = new mmrgl.LngLat(-123.9749, 40.7736);
ll.lng; // = -123.9749

static methods

Name Description

convert(input) Converts an array of two numbers or an object with properties lng and lat
or lon and lat to an LngLat object.

If a LngLat object is passed, the function returns it unchanged.

Options:
input:LngLatLike an array of two numbers, or an object to convert, or a
LngLat object to return.

Example:
var arr = [-73.9749, 40.7736];
var ll = mmrgl.LngLat.convert(arr);
ll; // = LngLat {lng: -73.9749, lat: 40.7736}

instance methods

Name Description

745

distanceTo(lngLat) Returns the approximate distance between a pair of coordinates in meters
using the Haversine formula (from R. W. Sinnott, "The Haversine Virtues",
Sky and Telescope, vol. 68, no. 2, 1984, p. 159)

Options:
lngLat:LngLat coordinates to estimate distance to the target

Example:
var newYork = new mmrgl.LngLat(-74.0060, 40.7128);
var losAngeles = new mmrgl.LngLat(-118.2437, 34.0522);
newYork.distanceTo(losAngeles); // = 3935751.690893987,
"true distance" calculated based on non-spherical
approximation is about 3966 km

toArray() Returns the coordinates represented as an array of two numbers.

Example:

var ll = new mmrgl.LngLat(-73.9749, 40.7736);
ll.toArray(); // = [-73.9749, 40.7736]

toBounds(radius) Returns LngLatBounds from coordinates extended by the given radius. The
returned LngLatBounds contains the entire radius.

Options:
radius:number (default 0) Distance in meters from the coordinates to
extend the bounds.

Example:

var ll = new mmrgl.LngLat(-73.9749, 40.7736);
ll.toBounds(100).toArray(); // = [[-73.97501862141328,
40.77351016847229], [-73.97478137858673,
40.77368983152771]]

toString() Returns the coordinates represented as a string.

Example:

var ll = new mmrgl.LngLat(-73.9749, 40.7736);
ll.toString(); // = "LngLat(-73.9749, 40.7736)"

746

wrap() Returns a new LngLat object whose longitude is wrapped in the range (from
-180 to +180).

Example:

var ll = new mmrgl.LngLat(286.0251, 40.7736);
var wrapped = ll.wrap();
wrapped.lng; // = -73.9749

LngLatLike

LngLat can be an array of two numbers (longitude and latitude), or an object with lng and lat or
lon and lat properties.

src/geo/lng_lat.js

Example:

var v1 = new mmrgl.LngLat(-122.420679, 37.772537);
var v2 = [-122.420679, 37.772537];
var v3 = {lon: -122.420679, lat: 37.772537};

LngLatBounds

The LngLatBounds object represents the boundary defined by its southwest and northeast
points in longitude and latitude.

If no arguments are provided, a null boundary is created.

Any MMR GL method that takes a LngLatBounds object as an argument or option can
also take an array of two LngLatLike constructs and perform an implicit conversion. This
flexible type is documented as LngLatBoundsLike.

src/geo/lng_lat_bounds.js

Options
sw:number — longitude in degrees
ne:number — latitude in degrees

static methods

Name Description

747

convert(input) Converts an array to a LngLatBounds object.
If a LngLatBounds object is passed, the function returns it unchanged.
Internally, the function calls LngLat#convert to convert arrays to LngLat
values.

Options:
input:LngLatBoundsLike An array of two coordinates to transform, or
LngLatBounds to return.

Example:

var arr = [[-73.9876, 40.7661], [-73.9397, 40.8002]];
var llb = mmrgl.LngLatBounds.convert(arr);
llb; // = LngLatBounds {_sw: LngLat {lng: -73.9876,
lat: 40.7661}, _ne: LngLat {lng: -73.9397, lat: 40.8002}}

instance methods

Name Description

contains(lnglat) Check if the point is inside the bounding box.

Options:
lnglat:LngLatLike

Example:
var llb = new mmrgl.LngLatBounds(
new mmrgl.LngLat(-73.9876, 40.7661),
new mmrgl.LngLat(-73.9397, 40.8002)
);

var ll = new mmrgl.LngLat(-73.9567, 40.7789);

console.log(llb.contains(ll)); // = true

extend(obj) Expand the bounds to include the given LngLatLike or LngLatBounds

Options:
obj:(LngLatLike | LngLatBoundsLike) extension object

748

getCenter() Returns a geographic coordinate equidistant from the corners of the
bounding box.

Example:
var llb = new mmrgl.LngLatBounds([-73.9876, 40.7661],
[-73.9397, 40.8002]);
llb.getCenter(); // = LngLat {lng: -73.96365, lat:
40.78315}

getEast() Returns the east edge of the bounding box.

getNorth() Returns the north edge of the bounding box.

getNorthEast() Returns the northeast corner of the bounding box.

getNorthWest() Returns the northwest corner of the bounding box.

getSouth() Returns the south edge of the bounding box.

getSouthEast() Returns the southeast corner of the bounding box.

getSouthWest() Returns the southwest corner of the bounding box.

getWest() Returns the southwest corner of the bounding box.

isEmpty() Check if the bounding box is empty/null.

setNorthEast(ne) Sets the northeast corner of the bounding box.
Options:
ne:LngLatLike set the northeast corner of the bounding box

setSouthWest(sw
)

Sets the southwest corner of the bounding box
Options:
ne:LngLatLike object describing the southwest corner of the bounding
box

toArray() Returns the bounding box represented as an array.

Example:
var llb = new mmrgl.LngLatBounds([-73.9876, 40.7661],
[-73.9397, 40.8002]);
llb.toArray(); // = [[-73.9876, 40.7661], [-73.9397,
40.8002]]

749

toString() Returns the bounding box, represented as a string.

Example:
var llb = new mmrgl.LngLatBounds([-73.9876, 40.7661],
[-73.9397, 40.8002]);
llb.toString(); // = "LngLatBounds(LngLat(-73.9876,
40.7661), LngLat(-73.9397, 40.8002))"

Example:
var sw = new mmrgl.LngLat(-73.9876, 40.7661);
var ne = new mmrgl.LngLat(-73.9397, 40.8002);
var llb = new mmrgl.LngLatBounds(sw, ne);

LngLatBoundsLike

The LngLatBounds object is an array of LngLatLike objects in the order [sw, ne] or an array of
numbers in the order [west, south, east, north].
src/geo/lng_lat_bounds.js

Example:
var v1 = new mmrgl.LngLatBounds(
new mmrgl.LngLat(-73.9876, 40.7661),
new mmrgl.LngLat(-73.9397, 40.8002)
);
var v2 = new mmrgl.LngLatBounds([-73.9876, 40.7661], [-73.9397,
40.8002])
var v3 = [[-73.9876, 40.7661], [-73.9397, 40.8002]];

Point

A Point object consists of x and y and indicates the location of the point on the map
src/ui/map.js

Example:

var point = new mmrgl.Point(-77, 38);

PointLike

A Point object or an array of two numbers representing the x and y screen coordinates in pixels.

src/ui/map.js

Example:

750

var p1 = new mmrgl.Point(-77, 38); // a PointLike which is a Point
var p2 = [-77, 38]; // a PointLike which is an array of two numbers

MercatorCoordinate

A MercatorCoordinate object represents a three-dimensional position.

MercatorCoordinate uses the Mercator Web Projection (EPSG:3857) with slightly different units:
● size of 1 unit of measure is the width of the projected world (instead of "meter

mercator").
● origin of space is in the northwest corner, not in the middle.

Example:
MercatorCoordinate(0, 0, 0) — northwest corner of the mercator world, and
MercatorCoordinate(1, 1, 0) — southeast corner. If you are familiar with vector tiles, it may be
useful to represent the coordinate space as a 0/0/0 tile with a magnitude/scale of 1.

The Z-dimension of MercatorCoordinate is conformal. A cube in mercator coordinate space will
be displayed as a cube.

src/geo/mercator_coordinate.js

Options
x:number — X position
y:number — Y position
z:number — Z position

static methods

Name Description

fromLngLat(lngLatLike,
altitude)

Project LngLat to MercatorCoordinate.

Options:
lngLatLike:LngLatLike Location for the project.
altitude:number (default 0) Position altitude in meters.

Example:

var coord =
mmrgl.MercatorCoordinate.fromLngLat({ lng: 0,
lat: 0}, 0);
coord; // MercatorCoordinate(0.5, 0.5, 0)

instance methods

Name Description

751

meterInMercatorCoordinate
Units()

Returns a distance of 1 meter in MercatorCoordinate units at
the given latitude.

For real-world coordinates using meters, this naturally
provides the scale for conversion to MercatorCoordinate

toAltitude() Returns altitude in meters from the coordinate.

Example:

var coord = new mmrgl.MercatorCoordinate(0, 0,
0.02);
coord.toAltitude(); // 6914.281956295339

toLngLat() Returns LngLat for the coordinate.

Example:

var coord = new mmrgl.MercatorCoordinate(0.5,
0.5, 0);
var lngLat = coord.toLngLat(); // LngLat(0, 0)

Example:

var nullIsland = new mmrgl.MercatorCoordinate(0.5, 0.5, 0);

EdgeInsets

The EdgeInset object represents the screen padding applied to the viewport edges. This shifts
the apparent map center or vanishing point. This is useful for adding floating UI elements on top
of the map and moving the vanishing point when UI elements are resized.

src/geo/edge_insets.js

Options
top:number — 0 by default
bottom:number — 0 by default
left:number — 0 by default
right:number — 0 by default

static methods

Name Description

752

getCenter(width,
height)

A utility method that calculates a new application center or vanishing
point after inserts have been applied. In pixels and with top left value
(0.0) and +y down.

Options:
width:number is the map width in pixels.
height: number is the map height in pixels.

interpolate(start,
target, t)

Interpolates an insert in place. This saves the current insertion value for
any insertion not present in target.

Options:
start: (PaddingOptions | EdgeInsets) padding options.
target:PaddingOptions padding options for target.
t:number interpolation variable.

toJSON() Returns the current state as json (used to set a read-only view for the
insert).

753

5. Handlers
BoxZoomHandler

BoxZoomHandler allows the user to zoom the map to fit within the bounding box. To define a
rectangle, you must simultaneously press and hold the Shift key and the left mouse button and
drag the cursor.

src/ui/handler/box_zoom.js

Methods

Name Description

disable() Disables “box zoom”

Example:

map.boxZoom.disable();

enable() Enables “box zoom”

Example:

map.boxZoom.enable()

isActive() Returns true if "box zoom" is active

isEnabled() Returns true if "box zoom" is enabled

ScrollZoomHandler

ScrollZoomHandler allows the user to zoom the map by scrolling.

src/ui/handler/scroll_zoom.js

Methods

Name Description

754

disable() Disables "scroll to zoom"

Example:

map.scrollZoom.disable()

enable(options?) Options:
around — if "center" is passed, the map will scale around the map
center

Examples:

map.scrollZoom.enable();

map.scrollZoom.enable({ around: 'center' })

isEnabled() Returns true if "scroll to zoom" is enabled

setWheelZoomRate
(wheelZoomRate)

Sets mouse wheel zoom speed

Options
wheelZoomRate — (default 1/450) Zoom speed.

Example:

// Slow down zoom of mouse wheel
map.scrollZoom.setWheelZoomRate(1/600);

setZoomRate(zoom
Rate)

Sets trackpad zoom speed

Options
zoomRate — (default 1/100) Zoom rate.

Example:

// Speed up trackpad zoom
map.scrollZoom.setZoomRate(1/25);

DragPanHandler

DragPanHandler allows the user to move the map by clicking and dragging the cursor.
src/ui/handler/shim/drag_pan.js

Methods

Name Description

755

disable() Disables "drag to pan"

Example:
map.dragPan.disable();

enable(options?) Enables "drag to pan"

Options:
linearity — used to scale drag velocity
easing — easing function is applied to map.panTo when dragged.
maxSpeed — maximum value of drag velocity.
deceleration — speed at which movement decreases after touching.

Examples:
map.dragPan.enable();

map.dragPan.enable({
linearity: 0.3,
easing: bezier(0, 0, 0.3, 1),
maxSpeed: 1400,
deceleration: 2500,

});

isActive() Returns true if "drag to pan" is active

isEnabled() Returns true if "drag to pan" is enabled

DragRotateHandler

DragRotateHandler allows the user to rotate the map by clicking and dragging the cursor while
holding down the right mouse button or the ctrl key.

src/ui/handler/shim/drag_rotate.js

Methods

Name Description

disable() Disables "drag to pan"

Example:
map.dragRotate.disable();

756

enable() Enables "drag to pan"

Example:
map.dragRotate.enable();

isActive() Returns true if "drag to rotate" is active

isEnabled() Returns true if "drag to rotate" is enabled

KeyboardHandler

KeyboardHandler allows the user to zoom, rotate and pan the map using the following keyboard
shortcut keys:

● = / + : Scale up to 1.
● Shift-= / Shift-+: Scale up to 2.
● -: Signal level decrease by 1.
● Shift -: Signal level decrease by 2.
● Arrow keys: Pan 100px.
● Shift+⇢: Rotation increase by 15 degrees.
● Shift+⇠: Rotation decrease by 15 degrees.
● Shift+⇡: Pitch increase by 10 degrees.
● Shift+⇣: Pitch decrease by 10 degrees.

src/ui/handler/keyboard.js

Methods

Name Description

disable() Disables "keyboard rotate and zoom"

Example:
map.keyboard.disable();

disableRotation() Disables "keyboard pan/rotate" but leaves "keyboard zoom" enabled

Example:
map.keyboard.disableRotation();

enable() Enables "keyboard rotate and zoom"

Example:
map.keyboard.enable();

757

enableRotation() Enables "keyboard pan/rotate"

Example:
map.keyboard.enableRotation();

isActive() Returns true if the handler is enabled and zoom/rotate is detected

isEnabled() Returns true if "keyboard rotate and zoom" interaction is enabled

DoubleClickZoomHandler

DoubleClickZoomHandler allows the user to zoom the map at a specific point by double-clicking
the left mouse button or double-tapping.

src/ui/handler/shim/dblclick_zoom.js

Methods

Name Description

disable() Disables "double click to zoom"

Example:

map.doubleClickZoom.disable();

enable() Enables "double click to zoom"

Example:
map.doubleClickZoom.enable();

isActive() Returns true if "double click to zoom" is active

isEnabled() Returns true if "double click to zoom" is enabled

TouchZoomRotateHandler

TouchZoomRotateHandler allows the user to zoom in and rotate the map by pressing on the
touch screen.

It can zoom in via single touch by double tapping and dragging. On the second tap, hold your
finger and drag up or down to zoom in or out.

src/ui/handler/shim/touch_zoom_rotate.js

758

Methods

Name Description

disable() Disables "pinch to rotate and zoom".

Example:
map.touchZoomRotate.disable();

disableRotation() Disables "pinch to rotate", leaving "pinch to zoom".

Example:
map.touchZoomRotate.disableRotation();

enable(options?) Enables "pinch to rotate and zoom"

Options
around — if "center" is passed, the map will be scaled around the map
center

Examples:

map.touchZoomRotate.enable();

map.touchZoomRotate.enable({ around: 'center' });

enableRotation() Enables "pinch to rotate"

Example:
map.touchZoomRotate.enable();
map.touchZoomRotate.enableRotation();

isActive() Returns true if the handler is enabled and has detected zoom/rotate.

isEnabled() Returns true if "pinch to rotate and zoom" is enabled

TouchPitchHandler

TouchPitchHandler allows the user to tilt the map by dragging it up and down with two fingers.

src/ui/handler/touch_zoom_rotate.js

Methods

759

Name Description

disable() Disables "drag to pitch"

Example:
map.touchPitch.disable();

enable() Enables "drag to pitch"

Example:
map.touchPitch.enable();

isActive() Returns true if "drag to pitch" is active

isEnabled() Returns true if "drag to pitch" is enabled

760

6. Sources
GeoJSONSource

A source which contains GeoJSON.

src/source/geojson_source.js

Examples:
map.addSource('some id', {
type: 'geojson',
data:

'https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_10m_ports
.geojson'
});

map.addSource('some id', {
type: 'geojson',
data: {

"type": "FeatureCollection",
"features": [{

"type": "Feature",
"properties": {},
"geometry": {

"type": "Point",
"coordinates": [

-76.53063297271729,
39.18174077994108

]
}

}]
}

});

map.getSource('some id').setData({
"type": "FeatureCollection",
"features": [{

"type": "Feature",
"properties": { "name": "Null Island" },
"geometry": {

"type": "Point",
"coordinates": [0, 0]

}

761

}]
});

Methods

Name Description

getClusterChildren(clusterI
d, callback)

For clustered sources, it retrieves dependent elements of
the given cluster at the next zoom level (as an array of
GeoJSON objects).

Options
clusterId:number — cluster ID
callback:function<Array<GeoJSONFeature>> — callback
function that will be called when fetching features ((error,
features) => { ... }).

getClusterExpansionZoom
(clusterId, callback)

For clustered sources, the scale at which this cluster
expands is selected.

Options
clusterId:number — cluster ID
callback:function<number> — callback function that will
be called when getting the zoom ((error, features) => { ... })

getClusterLeaves(clusterId
, limit, offset, callback)

For clustered sources, it retrieves the source points that
belong to the cluster (as an array of GeoJSON objects).

Options
clusterId:number — cluster ID
limit:number — maximum number of features
offset:number — number of features to skip (for example,
for pagination).
callback:function<Array<GeoJSONFeature>> — callback
function that will be called when objects are retrieved (
(error, features) => { ... }).

Example:
// Retrieve cluster leaves on click
map.on('click', 'clusters', function(e) {
var features =

map.queryRenderedFeatures(e.point, {
layers: ['clusters']

});

var clusterId =
features[0].properties.cluster_id;
var pointCount =

features[0].properties.point_count;

762

var clusterSource =
map.getSource('clusters');

clusterSource.getClusterLeaves(clusterId,
pointCount, 0, function(error, features) {

// Print cluster leaves in the console
console.log('Cluster leaves:', error,

features);
})

});

setData(data) Sets the GeoJSON data and re-renders the map.

Options
data:(Object|string) — GeoJSON or URL to it. The latter is
preferable for large files.

VideoSource

The data source which contains the video.

src/source/video_source.js

Example:
// add to map
map.addSource('some id', {

type: 'video',
url: [

'path-to-video.mp4',
'path-to-video.webm'

],
coordinates: [

[-76.54, 39.18],
[-76.52, 39.18],
[-76.52, 39.17],
[-76.54, 39.17]

]
});

// update
var mySource = map.getSource('some id');
mySource.setCoordinates([

[-76.54335737228394, 39.18579907229748],
[-76.52803659439087, 39.1838364847587],

763

[-76.5295386314392, 39.17683392507606],
[-76.54520273208618, 39.17876344106642]

]);

map.removeSource('some id'); // remove

Methods

Name Description

getVideo() Returns an HTML video

pause() Sets a video pause

play() Continues video playback

setCoordinates() Sets video coordinates and re-renders the map

ImageSource

Image data source

src/source/image_source.js

Example:
// add to map
map.addSource('some id', {

type: 'image',
url: 'foo.png',
coordinates: [

[-76.54, 39.18],
[-76.52, 39.18],
[-76.52, 39.17],
[-76.54, 39.17]

]
});

// update coordinates
var mySource = map.getSource('some id');
mySource.setCoordinates([

[-76.54335737228394, 39.18579907229748],
[-76.52803659439087, 39.1838364847587],
[-76.5295386314392, 39.17683392507606],

764

[-76.54520273208618, 39.17876344106642]
]);

// update url and coordinates simultaneously
mySource.updateImage({

url: 'bar.png',
coordinates: [

[-76.54335737228394, 39.18579907229748],
[-76.52803659439087, 39.1838364847587],
[-76.5295386314392, 39.17683392507606],
[-76.54520273208618, 39.17876344106642]

]
})

map.removeSource('some id'); // remove

Methods

Name Description

setCoordinates(coordinates) Sets the image coordinates and re-renders the map.

updateImage(options) Updates the URL — image address and coordinates (optionally
). To avoid image flicker, set the raster-fade-duration property to
0.

Options
url:string — Image URL
coordinates:Array<Array<number>> — four coordinates,
represented as arrays of longitude and latitude numbers, that
define the image corners. The coordinates start at the top left
corner of the image and go clockwise.

CanvasSource

The data source contains the HTML canvas content.
src/source/canvas_source.js

Example:
// add to map
map.addSource('some id', {

type: 'canvas',
canvas: 'idOfMyHTMLCanvas',
animate: true,
coordinates: [

765

[-76.54, 39.18],
[-76.52, 39.18],
[-76.52, 39.17],
[-76.54, 39.17]

]
});

// update
var mySource = map.getSource('some id');
mySource.setCoordinates([

[-76.54335737228394, 39.18579907229748],
[-76.52803659439087, 39.1838364847587],
[-76.5295386314392, 39.17683392507606],
[-76.54520273208618, 39.17876344106642]

]);

map.removeSource('some id'); // remove

Methods

Name Description

getCanvas() Returns the HTML canvas

pause() Disables animation. The map will display a static copy of the
canvas image.

play() Enables animation. The map will be interactive.

setCoordinates(coordinates) Sets canvas coordinates and re-renders the map.

Options:
coordinates:Array<Array<number>> — four coordinates,
represented as arrays of longitude and latitude numbers, that
define the canvas corners. Coordinates start at the top left
corner of the canvas and go clockwise.

CanvasSourceOptions

Options for adding a canvas source type to the map.

src/source/canvas_source.js

Parameters
type:string — source type, should be equal to "canvas".

766

canvas:(string | HTMLCanvasElement) — canvas source from which pixels can be read. This
can be a string representing the canvas element ID, or the HTMLCanvasElement itself.
coordinates:Array<Array<number>> — four coordinates denoting where to place the canvas
corners, set in [longitude, latitude] pairs.
animate:boolean — whether the canvas source is animated. If the canvas is static (i.e. pixels
don't need to be re-read on every frame), animate should be set to false to improve
performance.

767

7. Events
Evented
Listeners adding and removal methods
src/util/evented.js

Methods

Name Description

off(type, listener) Removes a previously registered listener.

Options
type:string — event type
listener:function — listener function

on(type, listener) Registers a new listener

Options
type:string — event type
listener:function — listener function

once(type, listener) Adds a listener that will only be called once for the specified event type.

Options
type:string — event type
listener:function — listener function

MapMouseEvent

Mouse related events

src/ui/events.js

Example:
// The `click` event is an example of a `MapMouseEvent`.
// Set up an event listener on the map.
map.on('click', function(e) {
// The event object (e) contains information like the
// coordinates of the point on the map that was clicked.
console.log('A click event has occurred at ' + e.lngLat);

});

Properties

768

Name Description

lngLat Cursor coordinates on the map

originalEvent DOM events that triggered the map event

point Map related pixel coordinates of the mouse cursor are measured from
the top left corner.

preventDefault() Prevents subsequent event processing.
If this method is called, the following events will be stopped:

● mousedown, DragPanHandler behavior
● mousedown DragRotateHandler behavior
● mousedown, BoxZoomHandler behavior
● dblclick, DoubleClickZoomHandler behavior

target Map object that triggered the event.

type Event type (Map.event:mousedown, Map.event:mouseup,
Map.event:click, Map.event:dblclick, Map.event:mousemove,
Map.event:mouseover, Map.event:mouseenter, Map.event:mouseleave,
Map.event:mouseout, Map.event:contextmenu).

MapTouchEvent

Touch events

src/ui/events.js

Properties

Name Description

lngLat Touch coordinates on the map

lngLats Array of coordinates corresponding to touches on the map

originalEvent DOM events that triggered the map event

point Map related pixel coordinates of the mouse cursor are measured from
the top left corner.

points Array of pixel coordinates corresponding to touches.

769

preventDefault() Prevents subsequent event processing.
If this method is called, the following events will be stopped:

● touchstart, DragPanHandler behavior
● touchstart, TouchZoomRotateHandler behavior

target Map object that triggered the event.

type Event type

MapBoxZoomEvent

'boxzoom' related events used by BoxZoomHandler

src/ui/events.js

Options
originalEvent:MouseEvent — DOM event that triggered the 'boxzoom' eventm (MouseEvent
or KeyboardEvent).
type:string — event type 'boxzoom' (boxzoomstart, boxzoomend or boxzoomcancel).
target:Map — map instance that raised the event.

MapDataEvent

MapDataEvent object is created along with the Map.event:data and Map.event:dataloading
events. Possible values for data types are:

● «source»: data not associated with tiles, but associated with any source.
● «style»: map style

Options
type:string — event type.
dataType:string — modified data type ("source", "style").
isSourceLoaded:boolean — true if the event data type is "source" and the source has no
outstanding network requests.
source:Object — source type object.
sourceDataType:string — enabled for source data type events and the event reports that the
internal data has been received or changed. Possible values are 'metadata' , 'content' and
'visibility' .
tile:Object — tile to be loaded or changed for source data type events and tile loading events.
coord:Coordinate — tile coordinate for source data type events and tile loading events.

src/ui/events.js

// The sourcedata event is an example of MapDataEvent.
// Set up an event listener on the map.

770

map.on('sourcedata', function(e) {
if (e.isSourceLoaded) {
// Do something when the source has finished loading

}
});

MapWheelEvent

Wheel related events

src/ui/events.js

Properties

Name Description

orignalEvent DOM event that triggered the map event.

preventDefault() Prevents further event handling.
If this method is called, ScrollZoomHandler will be stopped.

target Map object that triggered the event.

type Event type

771

8. How to use the library in React applications

React is a JavaScript library used to create user interfaces. Because React manipulates the
DOM, it can be difficult to link React with other libraries that also manipulate the DOM and
manage the state similar to MMR GL JS.

In this section, you'll learn how to create a React app that uses MMR GL JS to render a map,
display the coordinates of the map's center point and zoom level, and then update the display in
the course of user interaction with the map. You can use the principles in this guide to build
more complex apps using both React and MMR GL JS.
Setting up a React app structure

Create a new folder with the project name.
● package.json — this file is used to specify all packages required by your application.

Create a public folder in the project folder. In this folder, create two new files:
● index.html — This HTML file will display a rendered map that your users can interact

with.
● site.css — This file will contain the CSS needed to format the map and sidebar properly.

Creates an HTML wireframe
In the project folder, create another folder named src. In the src folder, create a new file:

● index.js — this JavaScript file will contain all the React logic needed to set up and
manage the app state and display the map.

After creating these folders and files, the following file structure will be generated:

project
└── package.json
└── public
│ └── index.html
│ └── site.css
└── src

└── index.js

Then, run npm install.
Creating a React app

Open public/index.html and paste the following code into it:
<!DOCTYPE html>
<html lang="en">
<head>

<title>MMR GL JS and React</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width,

initial-scale=1" />

<link href="https://geo.rustore.ru/sdk/js/<version>/mmr-gl.css"
rel="stylesheet" />

772

<link href="%PUBLIC_URL%/site.css" rel="stylesheet" />

<script
src="https://geo.rustore.ru/sdk/js/<version>/mmr-gl.js"></script>
</head>
<body>

<div id="app"></div>
</body>
</html>

This code creates the HTML page structure available to a user. The <body> of the page has a
<div> tag with the application ID. This <div> is the container in which the React app will be
rendered on the page.

This code also references two different style files in <head>. The first style is the MMR GL JS
style, which ensures that the elements on your map are displayed correctly. The second style is
the site.css file you created earlier, where you'll add a CSS for a specific app.

Installing a default state

Open src/index.js. Add the following imports to the file top:

src/index.js

With hooks
import React, { useRef, useEffect, useState } from 'react';
import ReactDOM from 'react-dom';

With classes
import React from 'react';
import ReactDOM from 'react-dom';

Import MMR GL and add your access token. Set an access token (accessToken):
mmrgl.accessToken = 'token';

You can also customize your React app. To create the structure where you'll add the code from
the next few steps, add the following index.js:

With hooks
const Map = () => {};

ReactDOM.render(<Map />, document.getElementById('app'));

With classes

773

class Map extends React.PureComponent {}

ReactDOM.render(<Map />, document.getElementById('app'));

This defines the map and then specifies that it should be rendered in a <div> with an application
ID.

Map drawing

Follow the following steps to render the map in your application. The entry point for map
initialization in a React app is beyond one element, specified in return. Add the following code to
your application:

src/index.js

With hooks
return (

<div>
<div className="map-container" ref={mapContainer} />

</div>
);

With classes
render() {

const { lng, lat, zoom } = this.state;
return (

<div>
<div ref={this.mapContainer} className="map-container" />

</div>
);

}

mapContainer ref specifies that the map should be drawn on the HTML page in a new <div>
element.

The map needs several style rules to display correctly. Add the following code to the site.css
file:

.map-container {
position: absolute;
top: 0;
right: 0;
left: 0;

774

bottom: 0;
}

Save your changes. At the command prompt, run npm start. This starts a local server and
opens a new page in your browser along with your application.
When you open your browser console, you may see an error: 'map' is assigned a value but
never used. There is nothing to worry about — you'll be using the map variable in the next step!

Coordinate storage
Once there, you need to create a function that will save the new latitude, longitude, and scale as
the user interacts with the map. You should set an MMR GL JS map.on('move') function that
indicates the state values when the user moves the map. If you are using hooks in useEffect or
classes in componentDidMount(), add the following code:

With hooks
map.on('move', () => {

setLng(map.getCenter().lng.toFixed(4));
setLat(map.getCenter().lat.toFixed(4));
setZoom(map.getZoom().toFixed(2));

});

With classes
map.on('move', () => {

this.setState({
lng: map.getCenter().lng.toFixed(4),
lat: map.getCenter().lat.toFixed(4),
zoom: map.getZoom().toFixed(2)

});
});

This function possesses useState() if you're using hooks, or setState() if you're using classes, to
reset the lng, lat, and zoom values when the map is moved. The function features the following
methods:

● getCenter(), MMR GL JS method to get the new longitude and latitude of the map center
point.

● getZoom(), MMR GL JS method to determine the zoom level the map is set to.
● toFixed(), a JavaScript method that allows you to cut the resulting floating point number

to a given number of digits.

Coordinate display

775

When collecting and storing this information, you can use return to display it on the map. Inside
the opening <div> tag created to store the map, add a new <div> to display the map longitude,
latitude, and scale. Afterwards, the return will look like this:

With hooks
return (

<div>
<div className="sidebar">

Longitude: {lng} | Latitude: {lat} | Zoom: {zoom}
</div>
<div className="map-container" ref={mapContainer} />

</div>
);

With classes
render() {

const { lng, lat, zoom } = this.state;
return (

<div>
<div className="sidebar">

Longitude: {lng} | Latitude: {lat} | Zoom: {zoom}
</div>
<div ref={this.mapContainer} className="map-container" />

</div>
);

}

Apply a few styles to the sidebar for correct display on the page. Add the following CSS to
site.css:

.sidebar {
background-color: rgba(35, 55, 75, 0.9);
color: #ffffff;
padding: 6px 12px;
font: 15px/24px monospace;
z-index: 1;
position: absolute;
top: 0;
left: 0;
margin: 12px;
border-radius: 4px;

}

776

Click “Save” and return to the browser page. The top left map corner has a sidebar styled
according to the CSS rules set in site.css. The sidebar shows the current latitude and longitude
of the map center, as well as the zoom level. As you zoom and move the map, the sidebar
contents will be updated.

777

Description of additional map objects
AttributionControl

The AttributionControl control provides information about the map's attributes (copywriting, and
so on).

src/ui/control/attribution_control.js

Options:
compact:boolean — if true, then it will always be displayed in a compact view, if false, it will
always be in full size, by default it works depending on the map size (viewport < 640 ? compact
: full)
customAttribution:string|Array<string> — string or strings to display in map attributes

Example:
var map = new mmrgl.Map({attributionControl: false})
.addControl(new mmrgl.AttributionControl({

compact: true
}));

LngLatBoundsLike

An LngLatBounds object, an array of LngLatLike objects in the order [sw, ne], or an array of
numbers in the order [west, south, east, north].

src/geo/lng_lat_bound.js

Example:
var v1 = new mmrgl.LngLatBounds(

new mmrgl.LngLat(-73.9876, 40.7661),
new mmrgl.LngLat(-73.9397, 40.8002)

);
var v2 = new mmrgl.LngLatBounds([-73.9876, 40.7661], [-73.9397,
40.8002])
var v3 = [[-73.9876, 40.7661], [-73.9397, 40.8002]];

778

Static map

/staticmap/png — service that allows you to get a map image.

Request

Required request parameters

Field
name

Format Description Example

api_key hex-string See “Access to services”
fa749bace6d8a3b1....

latlon float,float Latitude and longitude (in degrees)
of the geometric center of the
desired map image.

Latitude and longitude are
separated by commas
.

When specifying bbox in the
request, the values specified
in latlon are ignored

latlon=55.727,37.59

bbox float,float,f
loat,float

Object area, which is described by a
pair of coordinates in the order:
lat1,lon1,lat2,lon2

The latitude and longitude of the
coordinates are specified separated
by commas.

Coordinates are separated by
comma

bbox=55.7,37.65,55.8,37.66

Additional request parameters

779

Field
name

Format Description Example

zoom integer Zoom level ranging from 0 to 17, where
● 0 (default) — corresponds to the

world level of view;
● 17 — corresponds to the building

level of view.

zoom=13

width integer Map image width.
The value can range from 32 to 1024
pixels (default 512)

width=640

height integer Map image height.
The value can range from 32 to 1024
pixels (default 512)

height=480

pins string Options that determine the location and
type of pins added to the map.
These options must be passed in the
below format:
lat1,lon1,icon1|lat2,lon2,icon2|..., where

● lat1...latN — pin location latitude
in degrees;

● lon1...lonN — pin location
longitude in degrees;

● icon1...iconN - pin format.
The available pins formats are
represented in the pin collection

pins=55.7505,37.6165,blue_s
tar|60.6543,38.1255,red_cam
era

style string Map style selection option.
The default style is: main style=light

padding integer Map attribute shift option. The shift is
defined in pixels and is equal to the
distance from the right edge of the label to
the right edge of the attributes.
Restrictions: value can range from 5 to
width/2 pixels (default 5)

padding=40

780

scale integer Image scaling option. Possible values are
1 or 2 (default 1).
If scale=2, then the final image
dimensions will be 2 times larger due to
the higher pixel density. For example, if
you request
width=200&height=200&scale=2, the
resulting image will be 400x400 pixels,
though it will look like the request
width=200&height=200, not
width=400&height=400:

width=200&height=200

width=200&height=200&scale=2

width=400&height=400

scale=2

781

Request (POST)

Required request parameters (GET)

Field
name

Format Description Example

api_key hex-string See “Access to
services” fa749bace6d8a3b1....

Required request parameters (POST)

These parameters are accepted in the request body as part of a JSON object

Field
name

Format Description Example

coord coord — JSON object
with float fields "lat" and
"lon"

Latitude and longitude (in
degrees) of the geometric
center of the desired map
image.

When specifying "bbox"
in the request, the
values specified in
"coord" are ignored

{
"lat": 55.727,
"lon": 37.59

}

bbox JSON array of 2
elements

Object area, which is described
by a pair of coordinates. "bbox": [

{
"lat": 55.71,
"lon": 37.65

},
{
"lat": 55.8,
"lon": 37.6535

}
]

Additional request parameters

Field
name

Format Description Example

782

zoom integer Zoom level ranging from 0
to 17, where

● 0 (default) —
corresponds to the
world level of view;

● 17 — corresponds
to the building level
of view.

"zoom": 13

width integer Map image width.
The value can range from
32 to 1024 pixels (default
512)

"width": 640

height integer Map image height.
The value can range from
32 to 1024 pixels (default
512)

"height": 480

pins JSON
array

Description of pins added to
the map "pins": [

{
"coord": {
"lat": 55.73,
"lon": 37.59

},
"icon": {
"symbol": "rustore-corp_photo"

}
},
{
"coord": {
"lat": 55.76,
"lon": 37.59

},
"icon": {
"base64": "iVBORw0KGgoA"...

}
},
{
"coord": {
"lat": 55.745,
"lon": 37.67

},
"icon": {

coord JSON
array

Specifies the location of
pins added to the map

icon JSON
array

Description of pins
appearance added to the
map

symbol string The "symbol" field contains
the pin's visual format
The available pins formats
are represented in the pin
collection

base64 string Base64 encoded image of a
pin in PNG format
(maximum 250k characters)

783

"url":
"https://geo.rustore.ru/welcome/stati
c-map-logo-50x50.png"
}

}
]

url string PNG image URL. URL
length must not exceed
1000 characters, image size
must not exceed 512 KB.
Only HTTPS transport,
uncompressed transfer with
no redirects.

features GeoJSON
object

GeoJSON describing the
geometry to display on the
map top layer.
properties is optional.

"features": {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [37.6165,

55.7505]
},
"properties": {
"title": "points"

}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[37.6163, 55.7503], [37.6164,

55.7504], [37.6165, 55.7505],
[37.6166, 55.7506]

]
},
"properties": {
"title": "line"

}
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[[37.6395,55.73],

[37.6066,55.73], [37.6066,55.751],
[37.6395,55.751], [37.6395,55.73]],

784

[[37.6345,55.735],
[37.6345,55.746], [37.6116,55.746],
[37.6116,55.735], [37.6345,55.735]]

]
},
"properties": {
"title": "polygon"

}
}

]
}

features
-style

JSON
object

Sets the visual display of
GeoJSON passed to
features.
Visualization of points, lines
and polygons is configured
separately:

● point — point
settings. The points
are displayed as
circles.

○ circle-color
— circle
color

○ circle-opacity
— circle
transparency

○ circle-radius
— circle
radius in
pixels

● line — line settings
○ line-width —

line thickness
in pixels

○ line-color —
line color

○ line-opacity
— line
transparency

● polygon — polygon
settings

○ fill-color — fill
color

○ fill-opacity —
fill
transparency

"features-style": {
"point": {
"circle-color": "#ffffff",
"circle-opacity": 0.8,
"circle-radius": 4.0

},
"line": {
"line-color": "#2688eb",
"line-width": 2.0

},
"polygon": {
"fill-color": "#2688eb",
"fill-opacity": 0.5

}
}

785

style string Map style selection option.
The default style is: main "style": "light"

padding integer Map attribute shift option.
The shift is defined in pixels
and is equal to the distance
from the right edge of the
label to the right edge of the
attributes.
Restrictions: value can
range from 5 to width/2
pixels (default 5)

"padding": 40

scale integer Image scaling option.
Possible values are 1 or 2
(default 1).

"scale": 2

Response

In response, you will receive an image of a part of the map that matches the parameters
specified in the request.

Example

Request (GET)

https://geo.rustore.ru/api/staticmap/png?api_key=<YOUR_API_KEY>&latlon
=55.727,37.59&style=main&zoom=10&width=1024&height=512&padding=5&pins=
55.73,37.59,rustore-corp_photo|55.76,37.59,green_star|55.745,37.67,rus
tore-electric_a

Request (POST)

{
"width": 660,

786

"height": 600,
"bbox": [{

"lat": 55.71,
"lon": 37.65

}, {
"lat": 55.8,
"lon": 37.6535

}
],
"padding": 200,
"scale": 1,
"features": {},
"coord": {
"lat": 55.7505,
"lon": 37.6165

},
"pins": [
{
"coord": {
"lat": 55.73,
"lon": 37.59

},
"icon": {
"symbol": "rustore-corp_photo"

}
},
{
"coord": {
"lat": 55.76,
"lon": 37.59

},
"icon": {
"symbol": "green_star"

}
},
{
"coord": {
"lat": 55.745,
"lon": 37.67

},
"icon": {

787

"symbol": "rustore-electric_a"
}

}
],
"zoom": 11,
"style": "main"

}

Response

788

Pin collection

Icon name (icon request parameter) is generated as "color"+"_"+"type". icon=color_image

For example, you can use icon=red_camera if you need a red pin with a camera image.

When using a static map imager service, you can only use predefined pins.
If you need to add additional pins for your project, please contact RuStore support.

Pin types

Icons

Digits

789

Alphabet

790

Example view

Regular view Close up view

Water Airport + overlay

791

Map styles

Currently, several map styles are available to be used with services. The list is constantly
updated. If none of the styles meets your requirements, then we can develop a custom style for
your project.

Style zoom level = 5 zoom level = 10 zoom level = 15

light

main

dark

792

Routing Services

Routing at the RuStore is currently represented by the following services:

● route planner;
● distance matrix calculation;
● reachable area calculation;
● best route planner.

793

Route Planner

Route Planner allows you to create car, bicycle and pedestrian routes between two points, with
the ability to specify intermediate points of the route.

/directions — call point of the route planner which enables you to estimate several alternative
routes in one request and supports traffic jams monitoring.

Request

An HTTP request is sent in JSON and consists of required and optional fields. Required
parameters must be specified in the request url.

A simple JSON request example:

{
"locations":[

{
"lat":43.133200,
"lon":131.911300

},
{

"lat":50.266000,
"lon":127.535600

}
],
"costing":"auto",
"costing_options":{

"auto":{
"use_border_crossing":0

}
},
"directions_options":{

"units":"kilometers"
},
"id":"my_route"

}

The above request makes up a route between Vladivostok and Blagoveshchensk. It is being
created to avoid a route through China, imposing a cross-border fine. The received route is
displayed in kilometers.

Required request url-parameters

794

Parameter name Format Description Example

api_key hex-string See “Access to
services” fa749bace6d8a3b1....

Required JSON fields in an HTTP request

Field
name

Forma
t

Description Example

locations list List of points to make up a route in a JSON
array.

The route between the points is built
according to the request.

Each point is set by parameters, which are
described below

"locations":
[

{
"lat":55.796932,
"lon":37.537849,
"heading":150
},
{
"lat":55.865625,
"lon":37.462290,
"type":"via"
},
{
"lat":55.962139,
"lon":37.406377
}

]

lat float Route point latitude in degrees, 6 decimal
places "lat":55.796932

lon float Route point longitude in degrees, 6 decimal
places "lon":37.537849

795

Extra JSON fields in an HTTP request

Field name Format Description Example

type string Route point type. This optional
request field affects two
parameters: the ability to turn
around at a given point and to
create a separate reference
branch in the legs list:
● break (by default) —
U-turns are allowed, a separate
guiding branch will be created
for this point in the legs list
● through — U-turns are
not allowed, a separate guiding
line will not be created for this
point in the legs list
● via — U-turns are
allowed, a separate guiding line
will not be created for this point
in the legs list
● break_through —
U-turns are not allowed, a
separate reference branch will
be created for this point in the
legs list

The types for the first
and last route points
should be ignored and
always considered
equal to break

"type":"break"
"type":"via"

heading float Preferred driving direction at
start (optional request
parameter).

The direction is indicated in
degrees from north clockwise,
where north — 0°, east — 90°,
south — 180°, west — 270°

"heading":150

costing string Transport type for planning a
route:
● auto (default) — automobile;
● truck — cargo transport;
● pedestrian — pedestrian
route;
● bicycle — bicycle route;
● taxi — taxis and other
vehicles allowed to use public
transport lanes.

"costing":"pedestrian"

796

costing_options dict List of route calculation
parameters. Different transport
types have various options and
restrictions.

When using route calculation
parameters, you must specify
the type of transport for which
are subject to the above
parameters:
● auto (default) — automobile;
● truck — cargo transport;
● pedestrian — pedestrian
route;
● bicycle — bicycle route;
● taxi — taxis and other
vehicles allowed to use public
transport lanes.

"costing_options":
{

"auto":
{

"use_border_crossing":0,
"use_tolls":0

}
}

units string Distance unit in response:
● kilometers (by default) —
kilometers;
● miles — miles.

"units":"miles"

language string Response language:
● ru-RU (by default) —
Russian;
● en-US — English.

"language":"en—US"

id string Request ID that is returned with
the response, ensuring the
exact match between the
request and the response.

"id":"route_to_airport"

797

directions_type ● none
● maneuvers
● instructions

Enable description of
Maneuvers.

Possible values:
● none (by default) — exclude
Description of maneuvers from
the response;
● maneuvers — include
Description of maneuvers in
the response.
● instructions — add
instructions in the
corresponding language to the
Description of maneuvers

"directions_type":
"instructions"

avoid_locations list A set of locations to avoid
when building a route.
Specified as an array of points
with latitude and longitude

"avoid_locations":
[

{
"lat":55.871899,
"lon":37.457765
},
{
"lat":55.884556,
"lon":37.441633
},
{
"lat":55.923995,
"lon":37.395115
}

]

798

date_time list Date and time at starting point
or destination point to
determine more accurate route
results.

It is defined by two parameters:
● type — date and time type:
○ 0 (by default) — current date
and time at the point of
departure, the value is ignored;
○ 1 — date and time of
departure;
○ 2 — date and time of arrival.
● value — value of the
required date and time is
specified in ISO 8601
(YYYY-MM-DDThh:mm) in the
local time zone of the departure
or arrival, depending on the
type parameter.

"date_time":
{

"type":2,

"value":"2020—12—33T21:00"
}

alternates integer Maximum number of alternative
routes in addition to the main
one (returned if any).

Defined by a value from 0 to 4,
where:
● 0 (default) — one route will
be built, without alternative
ones;
● 4 — five routes will be
calculated;
— fractional values are not
allowed.

"alternates":3

alternates_multi
_points

boolean An attribute to enable the
creation of alternative routes in
case there are intermediate
points in the request. The
default — false.

"alternates_multi_points":tr
ue

completeness string An attribute for a possible
response extension.

Possible values:
● minimal (by default) —
minimal details return (only
maneuvers, no edges);
● enriched — information
about all edges in the route.

"completeness":"enriched"

Costing options

799

Auto

Field name Format Description Example

use_unpaved float A value which indicates
whether to include dirt roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include dirt
roads;
● 1 — include dirt roads;

— fractional values are
allowed.

Default value: 0.5

"use_unpaved":0.5

use_highways float A value which indicates
whether to use highways
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use highways;
● 1 (default) — use
highways;

— fractional values are
allowed.

"use_highways":0

use_tolls float A value which indicates
whether to include toll roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include toll
roads;
● 1 — include toll roads;

— fractional values are
allowed.

Default value: 0.5

"use_tolls":0

800

use_ferry float A value which indicates
whether to include ferry
crossings when building a
route.

Defined by a value from 0 to
1, where:
● 0 — do not use ferries;
● 1 — use ferries;

— fractional values are
allowed.

Default value: 0.5

"use_ferry":0.1

use_border_crossi
ng

float A value which indicates
whether to include roads that
cross the borders of other
states when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use
cross-border routes;
● 1 (default) — use
cross-border routes;

— fractional values are
allowed.

"use_border_crossing":0

traffic boolean Take into account traffic jams
and road events when
building a route.

Possible values:
● false (by default) — ignore
traffic jams and traffic
events;
● true — consider traffic
jams and traffic events.

"traffic":true

Truck

Field name Format Description Example

801

weight float Indication of the car weight in
tons, for building a route, taking
into account the permissible
weight loads on the road
network.

Default value: 21.77 tons.

Road sign number according to
GOST: 3.11.

"weight":10

height float Truck height in meters.

Default value: 4.11 m.

Road sign number according to
GOST: 3.13.

"height":4.0

width float Truck width in meters.

Default value: 9.07 m.

Road sign number according to
GOST: 3.14.

"width":11.1

length float Truck length in meters.

Default value: 21.64 m.

Road sign number according to
GOST: 3.15.

"length":19.4

axle_load float Axle load in tons.

Default value: 9.07 tons.

Road sign number according to
GOST: 3.12.

"axle_load":10.3

hazmat boolean A flag that determines if the truck
carries hazardous materials.

Default value: false.

Road sign number according to
GOST: 3.32.

"hazmat":true

802

use_unpaved float A value which indicates whether
to include dirt roads when
building a route.

Defined by a value from 0 to 1,
where:
● 0 — do not include dirt roads;
● 1 — include dirt roads;

— fractional values are allowed.

Default value: 0.5

"use_unpaved":0.5

use_highways float A value which indicates whether
to use highways when building a
route.

Defined by a value from 0 to 1,
where:
● 0 — do not use highways;
● 1 (default) — use highways;

— fractional values are allowed.

"use_highways":0

use_tolls float A value which indicates whether
to include toll roads when
building a route.

Defined by a value from 0 to 1,
where:
● 0 — do not include toll roads;
● 1 — include toll roads;

— fractional values are allowed.

Default value: 0.5

"use_tolls":0

use_ferry float A value which indicates whether
to include ferry crossings when
building a route.

Defined by a value from 0 to 1,
where:
● 0 — do not use ferries;
● 1 — use ferries;

— fractional values are allowed.

Default value: 0.5

"use_ferry":0.1

803

use_border_cr
ossing

float A value which indicates whether
to include roads that cross the
borders of other states when
building a route.

Defined by a value from 0 to 1,
where:
● 0 — do not use cross-border
routes;
● 1 (default) — use cross-border
routes;

— fractional values are allowed.

"use_border_crossing":0

traffic boolean Take into account traffic jams
and road events when building a
route.

Possible values:
● false (by default) — ignore
traffic jams and traffic events;
● true — consider traffic jams
and traffic events.

"traffic":true

Pedestrian

Field name Format Description Example

walking_speed float Average walking speed.
Specified in kilometers per
hour.

Default value: 5.1 km/h

"walking_speed":3

use_ferry float A value which indicates
whether to include ferry
crossings when building a
route.

Defined by a value from 0 to
1, where:
● 0 — do not use ferries;
● 1 — use ferries;

— fractional values are
allowed.

Default value: 0.5

"use_ferry":0.1

804

use_unpaved float A value which indicates
whether to include dirt roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include dirt
roads;
● 1 — include dirt roads;

— fractional values are
allowed.

Default value: 0.5

"use_unpaved":0.5

use_roads float A value which indicates
whether to use highways
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use highways;
● 1 — use highways;

— fractional values are
allowed.

Default value: 0.5

"use_road":0

use_border_crossi
ng

float A value which indicates
whether to include roads that
cross the borders of other
states when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use
cross-border routes;
● 1 (default) — use
cross-border routes;

— fractional values are
allowed.

"use_border_crossing":0

805

use_hills float A value which indicates
whether to include a route
with elevation changes. It is
used when selecting a
suitable route and in the
course of ETA calculation.

Defined by a value from 0 to
1, where:
● 0 — avoid terrain changes
as much as possible, even if
it leads to building a longer
route;
● 1 — do not avoid terrain
changes.

Fractional values are
allowed.

Default value: 0.5.

It is worth remembering that
it is not possible in all cases
to build an alternative route
given use_hills (for example,
if there is only one road
leading to the top of the hill).

"use_hills":0.25

step_penalty float A value which indicates a
penalty in seconds added to
each climb or descend
stairs/stairs. The higher the
value, the more stairs are
avoided.

"step_penalty":120.0

Bicycle

Field name Format Description Example

cycling_speed float Average cycling speed.
Specified in kilometers per
hour.

Default value: 20 km/h

"cycling_speed":30

806

use_ferry float A value which indicates
whether to include ferry
crossings when building a
route.

Defined by a value from 0 to
1, where:
● 0 — do not use ferries;
● 1 — use ferries;

— fractional values are
allowed.

Default value: 0.5

"use_ferry":0.1

use_unpaved float A value which indicates
whether to include dirt roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include dirt
roads;
● 1 — include dirt roads;

— fractional values are
allowed.

Default value: 0.5

"use_unpaved":0.5

use_roads float A value which indicates
whether to use highways
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use highways;
● 1 (default) - use highways;

— fractional values are
allowed.

Default value: 0.5

"use_road":0

807

use_border_crossi
ng

float A value which indicates
whether to include roads that
cross the borders of other
states when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use
cross-border routes;
● 1 (default) — use
cross-border routes;

— fractional values are
allowed.

"use_border_crossing":0

use_hills float A value which indicates
whether to include a route
with elevation changes. It is
used when selecting a
suitable route and in the
course of ETA calculation.

Defined by a value from 0 to
1, where:
● 0 — avoid terrain changes
as much as possible, even if
it leads to building a longer
route;
● 1 — do not avoid terrain
changes.

Fractional values are
allowed.

Default value: 0.5.

It is worth remembering that
it is not possible in all cases
to build an alternative route
given use_hills (for example,
if there is only one road
leading to the top of the hill).

"use_hills":0.25

808

Taxi

Field name Format Description Example

use_unpaved float A value which indicates
whether to include dirt roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include dirt
roads;
● 1 — include dirt roads;

— fractional values are
allowed.

Default value: 0.5

"use_unpaved":0.5

use_highways float A value which indicates
whether to use highways
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use highways;
● 1 (default) — use
highways;

— fractional values are
allowed.

"use_highways":0

use_tolls float A value which indicates
whether to include toll roads
when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not include toll
roads;
● 1 — include toll roads;

— fractional values are
allowed.

Default value: 0.5

"use_tolls":0

809

use_ferry float A value which indicates
whether to include ferry
crossings when building a
route.

Defined by a value from 0 to
1, where:
● 0 — do not use ferries;
● 1 — use ferries;

— fractional values are
allowed.

Default value: 0.5

"use_ferry":0.1

use_border_crossi
ng

float A value which indicates
whether to include roads that
cross the borders of other
states when building a route.

Defined by a value from 0 to
1, where:
● 0 — do not use
cross-border routes;
● 1 (default) — use
cross-border routes;

— fractional values are
allowed.

"use_border_crossing":0

Response

Background

Field name Format Description Example

trips list Root list of routes to-be
returned. Includes multiple
elements when requesting
alternative routes. Consists
of the trip objects described
below

trip dict Dictionary with full route
description

status number Error code
"status": 0

810

status_message string Error description
"status_message": "Found 2
route(s) between points"

units string Distance unit in response:
● kilometers — kilometers;
● miles — miles.

"units": "kilometers"

language string Response language:
● ru-RU — Russian;
● en-US — English.

"language": "ru—RU"

811

locations list List of route points as
requested with additional
information about them

"locations": [
{

"original_index": 0,
"type":

"break",
"lat":

55.796932,
"lon":

37.537849,
"heading": 150

},
{

"original_index": 1,
"lon":

37.462292,
"lat":

55.865623,
"type": "via"

},
{

"original_index": 2,
"lon":

37.406376,
"lat":

55.962139,
"type": "break"

}
]

original_index integer Route point serial number
"original_index": 0

812

type string Route point type:
● break (by default) —
U-turns are allowed, a
separate guiding branch will
be created for this point in
the legs list
● through —
U-turns are not allowed, a
separate guiding line will not
be created for this point in
the legs list
● via — U-turns are
allowed, a separate guiding
line will not be created for
this point in the legs list
● break_through —
U-turns are not allowed, a
separate reference branch
will be created for this point
in the legs list

"type": "break"

lat float Route point latitude in
degrees, 6 decimal places "lat": 55.796932

lon float Route point longitude in
degrees, 6 decimal places "lon": 37.537849

heading float Preferred driving direction at
start.

The direction is indicated in
degrees from north
clockwise, where north —
0°, east — 90°, south —
180°, west — 270°

"heading": 150

id string Request ID that is returned
with the response, ensuring
the exact match between
the request and the
response.

"id":"route_to_airport"

General info

813

Field
name

Format Description Example

summary dict General route info
"summary": {

"ll_boxes":
[{

"max_lon": 37.546925,

"max_lat": 55.962685,

"min_lat": 55.793781,

"min_lon": 37.406376
}],
"time":

2168.574,
"length":

29.121,
}

ll_boxes list A set of bounding boxes that
describe the route area. It generally
consists of 1 element. When crossing
the route through the antimeridian,
two boxes will be returned (on
opposite sides of the meridian).

"ll_boxes": [{
"max_lon":

37.546925,
"max_lat":

55.962685,
"min_lat":

55.793781,
"min_lon":

37.406376
}]

814

max_lon float Maximum route point boundary
longitude that includes the route, 6
decimal places

"max_lon": 37.546925

max_lat float Maximum route point boundary
latitude that includes the route, 6
decimal places

"max_lat": 55.962685

time float Estimated time required to move
along the route.

Estimated time is specified in
seconds.

"time": 2168.574

length float Total route length, indicated in the
selected units. "length": 29.121

min_lat float Maximum route point boundary
longitude that includes the route, 6
decimal places

"min_lat": 55.793781

min_lon float Maximum route point boundary
latitude that includes the route, 6
decimal places

"min_lon": 37.406376

Route and maneuvers

Field name Format Description Example

815

legs dict The legs object describes the route
and maneuvers between a pair of
points that have the property
"type":"break"

For break-type n route points, the
response contains n-1 route
description elements (for a request
without alternatives). For a request
with alternatives, each pair of
breakpoints can contain a number
of legs less than or equal to the
number of alternatives.

Each route description object
contains:
● summary dictionary similar to the
general one, but referring only to its
part between two break-type route
points;
● line shape;
● list of maneuvers.

"legs": [
{

"shape":
"...",

"summary": {

...
},
"maneuvers":

[
{

...
},
...
{

...
}

]
}

]

shape string Polyline encoded format to store a
series of latitude and longitude
coordinates as a single string (see
also: “Polyline path decoding”)

see the response example

816

edges list List of edges included in all
maneuvers (returned if
"completeness":"enriched" in the
input request).

"edges": [
{
"id": 12345,
},
...
{
...
}

]

id int Edge unique identifier (edge
attribute) "id": 3459922

length float Edge length (edge attribute), by
default in km, units of
measurement are specified in the
"units" field

"length": 0.314

817

use string Edge type
● road
● ramp
● turn_channel
● track
● driveway
● alley
● parking_aisle
● emergency_access
● drive_through
● culdesac
● living_street
● service_road
● cycleway
● mountain_bike
● sidewalk
● footway
● steps
● path
● pedestrian
● bridleway
● rest_area
● service_area
● other
● rail—ferry
● ferry
● rail
● bus
● egress_connection
● platform_connection
● transit_connection

"use": "cycleway"

road_class string Road class
● motorway
● trunk
● primary
● secondary
● tertiary
● unclassified
● residential
● service_other

"road_class": "secondary"

surface string Coating type according to
roughness (edge attribute):
● paved_smooth
● paved
● paved_rough
● compacted
● dirt
● gravel
● path
● impassable

"surface": "gravel"

818

toll boolea
n

Sign of entry into the toll road
section (edge attribute). Present
only for auto, motorcycle, truck, taxi
transport types

"toll": true

speed_limit int Maximum possible speed in km/h
(edge attribute) "speed_limit": 60

iso_code string ISO country code (edge attribute).
Specified if the edge is a boundary
edge for a cross-boundary route.
Format ISO 3166-1 alpha-2 (two
letter)

"iso_code": "RU"

819

maneuvers list List of maneuvers indicating the
points of maneuvers on the
polyline, as well as the length,
duration and hints for maneuvers in
the selected language

"maneuvers": [
{
"travel_type": "car",
"travel_mode": "drive",

"verbal_pre_transition_instru
ction": "Drive 9.5 km along
M-11.",

"verbal_transition_alert_inst
ruction": "Continue on
М—11.",

"length": 9.490,
"toll": true,
"instruction": "Continue

on М—11.",
"end_shape_index": 459,
"type": 8,
"time": 421.573,
"street_names": ["М—11"],
"begin_shape_index": 344
},
...
{
...
}

]

travel_mode string Routing mode:
● drive — for all transports
«costing»=«auto» and
«costing»=«truck»
● pedestrian
● bicycle

"travel_mode": "drive"

820

travel_type string Routing type.
● car — for
«travel_mode»=«drive» and
«costing»=«auto»
● tractor_trailer — for
«travel_mode»=«drive» and
«costing»=«truck»
● foot — for
«travel_mode»=«pedestrian»

Possible values for cycling
navigation are:
● hybrid, road, cross, mountain.

"travel_type": "car"

verbal_pre_t
ransition_ins
truction

string Text that can be used as a verbal
message for a driver. "verbal_pre_transition_instru

ction": "Drive 9.5 km along
M-11."

verbal_transi
tion_alert_in
struction

string Text that can be used as a verbal
message for a driver just before the
actual maneuver.

"verbal_transition_alert_inst
ruction": "Enter the
roundabout and take the
second exit."

verbal_multi
_cue

boolea
n

The variable has the value "true" in
cases where the verbal message
text
"verbal_pre_transition_instruction"
contains an indication of several
successive, closely spaced
maneuvers

"verbal_multi_cue": true

verbal_post_
transition_in
struction

string Text that can be used as a verbal
message immediately after the
maneuver completion

"verbal_post_transition_instr
uction": "Continue moving 100
meters."

verbal_succi
nct_transitio
n_instruction

string Text that describes the maneuver
briefly

821

instruction string Text to-be displayed with a hint
about the maneuver "instruction": "Take the left

exit onto Leningradsky
Prospekt."

length float Total maneuver length within the
boundaries between
"begin_shape_index" and
"end_shape_index", indicated in
the selected units of measurement

"length": 9.490

begin_shape
_index

integer Pointer to the maneuver start on
the polyline "begin_shape_index": 344

end_shape_i
ndex

integer Pointer to the maneuver end on the
polyline "end_shape_index": 459

begin_edge_
index

integer First edge index from the returned
edges array to start the maneuver
(returned if
"completeness":"enriched" is
present in the input request)

"begin_edge_index": 5

end_edge_in
dex

integer First edge index from the returned
edges array to end the maneuver
(returned if
"completeness":"enriched" is
present in the input request)

"end_edge_index": 9

type integer See below “Maneuver type code”
"type": 8

822

time float Estimated maneuver time within
the boundaries between
"begin_shape_index" and
"end_shape_index".
Time is estimated in seconds

"time": 421.573

cost float Maneuver or route difficulty level in
some abstract units. Allows you to
compare routes and maneuvers
with each other and evaluate which
one is more "demanding" in terms
of time, distance, etc.

street_name
s

list List of maneuver street names
"street_names": ["М—11"]

toll boolea
n

Variable is "true" if the maneuver or
part of it is payable.

Example: part of the maneuver is
on a toll road

"toll": true

ferry boolea
n

Variable is "true" if the maneuver is
not possible without using the ferry "ferry": true

rough boolea
n

Variable is "true" if the maneuver is
completely or partially carried out
on unpaved roads

"rough": true

gate boolea
n

Variable is "true" if the maneuver
crosses gates/barriers "gate": true

823

roundabout_
exit_count

integer Reference number of the
roundabout exit "roundabout_exit_count": 2

824

"type" value for maneuvers

“type” value Decryption

0 kNone

1 kStart

2 kStartRight

3 kStartLeft

4 kDestination

5 kDestinationRight

6 kDestinationLeft

7 kBecomes

8 kContinue

9 kSlightRight

10 kRight

11 kSharpRight

12 kUturnRight

13 kUturnLeft

14 kSharpLeft

15 kLeft

16 kSlightLeft

17 kRampStraight

18 kRampRight

19 kRampLeft

20 kExitRight

21 kExitLeft

22 kStayStraight

825

23 kStayRight

24 kStayLeft

25 kMerge

26 kRoundaboutEnter

27 kRoundaboutExit

28 kFerryEnter

29 kFerryExit

30 kTransit

31 kTransitTransfer

32 kTransitRemainOn

33 kTransitConnectionStart

34 kTransitConnectionTransfer

35 kTransitConnectionDestination

36 kPostTransitConnectionDestination

37 kMergeRight

38 kMergeLeft

Route not found

In case of zero request result, the response will look like this:

{"error_code":171,"error":"No suitable edges near
location","status_code":400,"status":"Bad Request"}

826

Example

Request

curl —X POST \
—H "Content—type: application/json" \
—H "Accept: application/json" \
—d

'{"locations":[{"lat":55.796932,"lon":37.537849,"heading":150},{"lat":
55.865625,"lon":37.462290,"type":"via"},{"lat":55.962139,"lon":37.4063
77}],"costing":"auto","language":"ru—RU","directions_type":"instructio
ns","id":"route_to_airport"}' \
"https://geo.rustore.ru/api/directions?api_key=<YOUR_API_KEY>"

Response

{
"trips":[

{
"trip":{

"locations":[
{

"type":"break",
"lat":55.796932,
"lon":37.537849,
"heading":150,
"city":"left",
"original_index":0

},
{

"type":"via",
"lat":55.865625,
"lon":37.46229,
"original_index":1

},
{

"type":"break",
"lat":55.962139,
"lon":37.406377,
"original_index":2

}
],

827

"legs":[
{

"maneuvers":[
{

"type":3,
"instruction":"Head northeast.",

"verbal_succinct_transition_instruction":"Drive north-west, then turn
right onto Leningradsky Prospekt.",

"verbal_pre_transition_instruction":"Drive
north-west, then turn right onto Leningradsky Prospekt.",

"verbal_post_transition_instruction":"Continue
driving for another 50 meters.",

"time":8.72,
"length":0.048,
"cost":364.824,
"begin_shape_index":0,
"end_shape_index":3,
"verbal_multi_cue":true,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":10,
"instruction":"Turn right onto Leningradsky

Prospekt.",
"verbal_transition_alert_instruction":"Turn

right onto Leningradsky Prospekt.",
"verbal_succinct_transition_instruction":"Turn

right.",
"verbal_pre_transition_instruction":"Turn

right onto Leningradsky Prospekt.",
"verbal_post_transition_instruction":"Continue

driving for another 600 meters.",
"street_names":[

"Leningradsky Prospekt"
],
"time":37.931,
"length":0.593,
"cost":72.21,
"begin_shape_index":3,

828

"end_shape_index":12,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":13,
"instruction":"Turn left to keep dring along

Leningradsky Prospekt.",
"verbal_transition_alert_instruction":"Turn

left to keep dring along Leningradsky Prospekt.",
"verbal_succinct_transition_instruction":"Turn

left.",
"verbal_pre_transition_instruction":"Turn left

to keep dring along Leningradsky Prospekt.",
"verbal_post_transition_instruction":"Continue

driving for another 10 km.",
"street_names":[

"Leningradsky Prospekt"
],
"time":535.509,
"length":10.369,
"cost":682.537,
"begin_shape_index":12,
"end_shape_index":164,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":23,
"instruction":"Keep right at the fork.",
"verbal_transition_alert_instruction":"Keep

right at the fork.",
"verbal_pre_transition_instruction":"Keep

right at the fork.",
"verbal_post_transition_instruction":"Continue

driving for another 400 meters.",
"time":34.122,
"length":0.378,
"cost":55.773,
"begin_shape_index":164,
"end_shape_index":174,

829

"travel_mode":"drive",
"travel_type":"car"

},
{

"type":15,
"instruction":"Turn left.",
"verbal_transition_alert_instruction":"Turn

left.",
"verbal_succinct_transition_instruction":"Turn

left.",
"verbal_pre_transition_instruction":"Turn

left.",
"verbal_post_transition_instruction":"Continue

driving for another 400 meters.",
"time":45.832,
"length":0.435,
"cost":75.448,
"begin_shape_index":174,
"end_shape_index":195,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":9,
"instruction":"Turn right onto Leningradskoye

highway.",
"verbal_transition_alert_instruction":"Turn

right onto Leningradskoye highway.",
"verbal_succinct_transition_instruction":"Turn

right, then after 300 meters, Turn right.",
"verbal_pre_transition_instruction":"Turn

right onto Leningradskoye highway, then after 300 meters, Turn
right.",

"verbal_post_transition_instruction":"Continue
for another 300 meters.",

"street_names":[
"Leningradskoye highway"

],
"time":12.615,
"length":0.289,
"cost":28.807,

830

"begin_shape_index":195,
"end_shape_index":199,
"verbal_multi_cue":true,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":9,
"instruction":"Turn right.",
"verbal_transition_alert_instruction":"Turn

right.",
"verbal_succinct_transition_instruction":"Turn

right, then after 50 meters, turn right.",
"verbal_pre_transition_instruction":"Turn

right, then after 50 meters, turn right.",
"verbal_post_transition_instruction":"Continue

for another 50 meters.",
"time":9.245,
"length":0.05,
"cost":91.808,
"begin_shape_index":199,
"end_shape_index":201,
"verbal_multi_cue":true,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":9,
"instruction":"Turn right.",
"verbal_transition_alert_instruction":"Turn

right.",
"verbal_succinct_transition_instruction":"Turn

right.",
"verbal_pre_transition_instruction":"Turn

right.",
"verbal_post_transition_instruction":"Continue

for another 100 meters.",
"time":40.258,
"length":0.123,
"cost":759.908,
"begin_shape_index":201,

831

"end_shape_index":213,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":10,
"instruction":"Turn right.",
"verbal_transition_alert_instruction":"Turn

right.",
"verbal_succinct_transition_instruction":"Turn

right.",
"verbal_pre_transition_instruction":"Turn

right.",
"verbal_post_transition_instruction":"Continue

for another 100 meters.",
"time":24.898,
"length":0.127,
"cost":36.26,
"begin_shape_index":213,
"end_shape_index":217,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":15,
"instruction":"Turn left.",
"verbal_transition_alert_instruction":"Turn

left.",
"verbal_succinct_transition_instruction":"Turn

left, then turn right onto Leningradskoe highway.",
"verbal_pre_transition_instruction":"Turn

left, then turn right onto Leningradskoe highway.",
"verbal_post_transition_instruction":"Continue

for another 20 meters.",
"time":8.515,
"length":0.018,
"cost":22.563,
"begin_shape_index":217,
"end_shape_index":218,
"verbal_multi_cue":true,
"travel_mode":"drive",

832

"travel_type":"car"
},
{

"type":10,
"instruction":"Turn right onto Leningradskoye

highway/Leningrad highway.",
"verbal_transition_alert_instruction":"Turn

right onto Leningradskoye highway.",
"verbal_succinct_transition_instruction":"Turn

right, then enter the roundabout and take the 3rd exit onto
Belomorskaya Street.",

"verbal_pre_transition_instruction":"Turn
right onto Leningradskoye Shosse, Leningrad Avenue, then go to the
roundabout and take the 3rd exit onto Belomorskaya Street.",

"verbal_post_transition_instruction":"Continue
for another 80 meters.",

"street_names":[
"Leningradskoe highway",
"Leningradskoe highway"

],
"time":5.75,
"length":0.081,
"cost":20.979,
"begin_shape_index":218,
"end_shape_index":220,
"verbal_multi_cue":true,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":26,
"instruction":"Enter the roundabout and take

the 3rd exit onto Belomorskaya Street.",
"verbal_transition_alert_instruction":"Enter

the roundabout and take the 3rd exit onto Belomorskaya Street.",

"verbal_succinct_transition_instruction":"Enter the roundabout and
take the 3rd exit.",

"verbal_pre_transition_instruction":"Enter the
roundabout and take the 3rd exit onto Belomorskaya Street.",

"time":20.267,

833

"length":0.255,
"cost":19.688,
"begin_shape_index":220,
"end_shape_index":239,
"roundabout_exit_count":3,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":27,
"instruction":"Exit the roundabout onto

Belomorskaya Street.",

"verbal_succinct_transition_instruction":"Leave the roundabout.",
"verbal_pre_transition_instruction":"Exit the

roundabout onto Belomorskaya Street.",
"verbal_post_transition_instruction":"Continue

for another 200 meters.",
"street_names":[

"Belomorskaya street"
],
"time":14.073,
"length":0.189,
"cost":24.333,
"begin_shape_index":239,
"end_shape_index":244,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":20,
"instruction":"Take the exit to Leningradskoye

highway.",
"verbal_transition_alert_instruction":"Take

the exit to Leningradskoye highway.",
"verbal_pre_transition_instruction":"Take the

exit to Leningradskoye highway.",
"verbal_post_transition_instruction":"Continue

for another 8 km.",
"street_names":[

"Leningradskoe highway"

834

],
"time":394.793,
"length":8.069,
"cost":500.92,
"begin_shape_index":244,
"end_shape_index":355,
"sign":{

"exit_branch_elements":[
{

"text":"Leningradskoe highway"
}

]
},
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":23,
"instruction":"Keep right towards

Sheremetyevo-2.",
"verbal_transition_alert_instruction":"Keep

right towards Sheremetyevo-2.",
"verbal_pre_transition_instruction":"Keep

right towards Sheremetyevo-2.",
"verbal_post_transition_instruction":"Continue

for another 600 meters.",
"street_names":[

"46Н—13925"
],
"time":34.818,
"length":0.578,
"cost":38.3,
"begin_shape_index":355,
"end_shape_index":372,
"sign":{

},
"travel_mode":"drive",
"travel_type":"car"

},
{

835

"type":24,
"instruction":"Keep left to exit onto

46Н—13925/Mezhdunarodnoe highway.",
"verbal_transition_alert_instruction":"Keep

left to exit onto 46Н—13925.",
"verbal_pre_transition_instruction":"Keep left

to exit onto 46Н—13925, Mezhdunarodnoe highway.",
"verbal_post_transition_instruction":"Continue

for another 2.5 km.",
"street_names":[

"46Н—13925",
"Mezhdunarodnoe highway"

],
"time":89.576,
"length":2.654,
"cost":75.352,
"begin_shape_index":372,
"end_shape_index":384,
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":24,
"instruction":"Keep left to stay on

46Н—13925/Mezhdunarodnoe highway.",
"verbal_transition_alert_instruction":"Keep

left to stay on 46Н—13925.",
"verbal_pre_transition_instruction":"Keep left

to stay on 46Н—13925, Mezhdunarodnoe highway.",
"verbal_post_transition_instruction":"Continue

driving for another 1.5 km.",
"street_names":[

"46Н—13925",
"Mezhdunarodnoe highway"

],
"time":50.683,
"length":1.254,
"cost":46.611,
"begin_shape_index":384,
"end_shape_index":403,
"travel_mode":"drive",

836

"travel_type":"car"
},
{

"type":24,
"instruction":"Keep left towards Sheremetyevo,

Terminal D.",
"verbal_transition_alert_instruction":"Keep

left towards Sheremetyevo.",
"verbal_pre_transition_instruction":"Keep left

towards Sheremetyevo, Terminal D.",
"verbal_post_transition_instruction":"Continue

for another 500 meters.",
"time":33.139,
"length":0.46,
"cost":38.839,
"begin_shape_index":403,
"end_shape_index":413,
"sign":{

},
"travel_mode":"drive",
"travel_type":"car"

},
{

"type":23,
"instruction":"Keep right at the fork.",
"verbal_transition_alert_instruction":"Keep

right at the fork.",
"verbal_pre_transition_instruction":"Keep

right at the fork.",
"verbal_post_transition_instruction":"Continue

for another 600 meters.",
"time":43.991,
"length":0.61,
"cost":63.974,
"begin_shape_index":413,
"end_shape_index":439,
"travel_mode":"drive",
"travel_type":"car"

},
{

837

"type":4,
"instruction":"You have reached your

destination.",
"verbal_transition_alert_instruction":"You

have reached your destination.",
"verbal_pre_transition_instruction":"You have

reached your destination.",
"time":0.0,
"length":0.0,
"cost":0.0,
"begin_shape_index":439,
"end_shape_index":439,
"travel_mode":"drive",
"travel_type":"car"

}
],
"summary":{

"ll_boxes":[{
"min_lat":55.79378,
"min_lon":37.39366,
"max_lat":55.962686,
"max_lon":37.546925,

}],
"has_time_restrictions":false,
"time":1444.743,
"length":26.583,
"cost":3019.145

},

"shape":"ydqliBeqcrfA_KyO_AyA{EsHv^aeA~FkPl[g_Ad[q~@nO}d@bt@stBtM}_@`C
iHvUmr@zAsF\\yEBcEKyDg@sDgAcDgKyPaBsA_Bc@iBEuBj@oBjBoDhFuOhf@mWlu@kCzH
}d@`tA}f@fxAwTlo@mk@`bBuU|q@sKh[uCnIcAtCoGlTwTzu@aDlJm}@xoC{Ujq@{Off@i
Nza@yGpUuFxQoHv]wGz]mGj_@qFr^mHrf@o^nyBiLzr@}SdkAeO`z@{BhMgK`p@wG`i@ka
@pmC{QphAec@tlDoGfe@mFt^c`@r`C_I|e@aUfuAsJjl@wGn`@qDbSgDfPsCxLsEjPmDnK
mFvNmBvFQj@eIjPcGjLyFnJiEvGeE~FeEjFiFvFwFhFaEjDiEbDmZbTyCdCyHnFc`@bYmk
DdlCag@x_@WRalBxxA}n@vf@qlCzoBcBhAic@b\\{eD|dCao@fd@qj@b^}b@p[snAp~@u|
@dq@}jAjbAs`@j^ii@pc@kGhFmmAv`A{a@n[uq@`j@mv@|k@}a@n[e`@`Zab@x[aMxJyaA
zv@{`BfnAwu@pj@arC~mBqbAdr@{fBtiAoFjDad@rYak@t^aQxKsy@vf@{e@|Xwo@l`@gn
A|v@oo@f`@ak@`]iz@ng@aZbRuk@r^}cBzcAup@|`@sf@hZs^xTkiAls@m_Avj@ie@xXyR
tLcQlK_h@h[yLnHcTzMkv@xc@}nAhu@mm@f_@kAt@{WdQ_[tRa@T_h@p[qNjIcBbAehAhp
@wh@v[mV|Ncu@lc@oj@t]_YvPsVbO{VfOcADkHVcs@dPsRlEs\\~F}GnBoFlCmFlDiJ|Jy

838

q@rw@xBrMjDxN`FrOdShm@jAdC`CnBfCl@~CKdOoFrHsF~HsGhIaJ~C{DhKsJtH{KhGyOh
Tar@z@oCbFkSlCuHnE}IjAy@jNmJzu@ke@xlAiv@tT~@rEQlAdARPxCtCvC|KrA~JvAlAz
LmHf@kDmB}N@_FsAyJWmBlOuJh]ySpJ_GdGwDqByOh_SbLyG`Hq@`ET`Dd@xCx@pnAn\
\dCfA|@x@d@Fx@Kv@u@t@qBb@{CPoDAgEUeDg@{Ci@_C_AaCc@YuAgFcAaIcEyb@}Eme@o
NowAk@ePF{H~@{DlCgGnC_DtC{@bCMxCn@|GjFlDtJxFnOz@hCnCzGfJjW|BxGXpCLdC?r
CK|C_@lCaBnF}B`DkAt@{WdQ_[tRa@T_h@p[qNjIcBbAehAhp@wh@v[mV|Ncu@lc@oj@t]
YvPsVbO{VfOyI~EcWhOaOjJ}`@j[aKtKk\\|]aW`]kVd@gGhJyo@ddAsdCrwDw[jj@id
ApzA{|@rkAgZj_@_ApAsvAzdB}^~c@qi@pq@}pArbBy@fA_n@vx@qFdHy@dAmzA`rB_I`L
oUj[GH_TnYwb@ll@yp@|_Agc@rl@_e@xo@qb@pl@y_@bi@wPlTmh@hs@_UrYsi@hs@mThZ
kaAxrAst@bbActBhqCaJxLssAveBczAprByw@|dA{z@ziAqc@rj@{m@t{@ucAhvAiBbCq^
`f@}^fh@kYdc@yNrUsaAxdBeFjI}JzQqOfX}n@fhAyyA~jCu`BluC}o@hfAegAjeBqZ`e@
kd@tr@iq@rfAgz@xrAmnCllEiTd]}b@bq@_mBtyCus@`gAsZ~OyS|K{KvFaf@pVyM|G}Iz
BaG~@sHFcHa@}HqAmIyCqIaEmUmNuRqJkc@oWcQgLo[yRu@e@{n@g`@k@_@_vD{_CsnDa|
B}WsPahHqpEaBcAegHcpE_i@e\\g`HokEiViOmsBopA{}@_k@sn@oa@uVcM{LqFoEoByQe
HwSuGw_@{JwSqCsTiB_U_A}V_@meAj@iv@v@_UTeNNmi@Mcm@h@}e@nBgi@@i|@KaQ]{Nc
@{Km@uJu@kMoAef@kH}AMoL{@kD?gDLkEr@oDdBiDjCoDxDqCtEaCtFaCfI}AjIoAxKy@v
MkLhsCk@nP]bOIfOV|OVrG`@vGnCfYpCx]nCd]bGfu@nFdq@nAtO"

}
],
"summary":{

"ll_boxes":[{
"min_lat":55.79378,
"min_lon":37.39366,
"max_lat":55.962686,
"max_lon":37.546925,

}],
"has_time_restrictions":false,
"time":1444.743,
"length":26.583,
"cost":3019.145

}
}

}
],
"ll_boxes":[{

"min_lat":55.79378,
"min_lon":37.39366,
"max_lat":55.962686,
"max_lon":37.546925,

}],
"status_message":"Found 1 route(s) between points",

839

"status":0,
"units":"kilometers",
"language":"ru—RU",
"id":"route_to_airport"

}

840

Distance Matrix

The distance matrix service allows you to calculate ETA and distance for start and destination
points that define the matrix. The service supports various matrices:

● one-to-many;
● many-to-many;
● many-to-one.

/dm — call point of the distance matrix calculation service.

Request

The request is sent using the HTTP POST method. The body of the POST request contains
JSON with required and optional fields.

Empty JSON example:
{"sources":[{"lat":55.796932,"lon":37.537849},{"lat":55.801551,"lon":3
7.531575}],"targets":[{"lat":55.790412,"lon":37.534313},{"lat":55.7886
44,"lon":37.536507}],"costing":"pedestrian","id":"DM_Test"}

This request calculates the time and distance matrix for the walking graph for start and
destination points.

Required url-request parameters

Field
name

Format Description Example

api_key hex-string See “Access to
services” api_key=fa749bace6d8a3b1....

Required JSON parameters

Field
name

Format Description Example

841

sources list List of departure points, where lat
and lon are latitude and longitude
in degrees (6 decimal places are
used)

"sources":

[

{

"lat": 55.796932,

"lon": 37.537849

},

{

"lat": 55.801551,

"lon": 37.531575

}

]

842

targets list List of destination points, where
lat and lon are latitude and
longitude in degrees (6 decimal
places are used)

"targets":

[

{

"lat": 55.790412,

"lon": 37.534313

},

{

"lat": 55.788644,

"lon": 37.536507

}

]

Maximum total number of sources and targets should not exceed 50 points.

Extra JSON parameters

Field name Format Description Example

costing string Transport type for planning a
route:

● auto (default) —
automobile;

● truck — cargo
transport;

● pedestrian —
pedestrian route;

● bicycle — bicycle
route.

"costing":"pedestrian"

id string Request ID that is returned
with the response, ensuring
the exact match between the
request and the response.

"id":"DM_Test"

843

costing_options dict List of route calculation
parameters. Different transport
types have various options
and restrictions.

"costing_options":
{

"use_border_crossing":0,
"use_tolls":0

}

units string Distance unit in response:
● kilometers (by default)

— kilometers;
● miles — miles.

"units":"miles"

Response

Field name Format Description Example

id string Request ID that is returned with
the response, ensuring the exact
match between the request and
the response.

"id": "DM_Test"

targets list List of destination points, where
lat and lon are latitude and
longitude in degrees (6 decimal
places are used)

"targets": [
[

{
"lon":

37.534313,
"lat":

55.790413
},
{

"lon":
37.536507,

"lat":
55.788643

}
]

]

844

sources list List of departure points, where lat
and lon are latitude and longitude
in degrees (6 decimal places are
used)

"sources": [
[

{
"lon":

37.537849,
"lat":

55.796932
},
{

"lon":
37.531574,

"lat":
55.801552

}
]

]

845

sources_to
_targets

list Calculated matrix which
contains the numbers of
departure and destination matrix
elements for each of the
calculation results, as well as
the calculated values of ETA
and EDA

"sources_to_targets": [
[

{
"distance":

1.076,
"time": 773,
"to_index": 0,
"from_index": 0

},
{

"distance":
1.459,

"time": 1041,
"to_index": 1,
"from_index": 0

}
],
[

{
"distance":

1.828,
"time": 1311,
"to_index": 0,
"from_index": 1

},
{

"distance":
2.211,

"time": 1579,
"to_index": 1,
"from_index": 1

}
]

]

846

distance float Total route length, indicated in the
selected units of measurement
(EDA)

"distance": 1.828

time float Estimated time required to move
along the route (ETA).
Time is estimated in seconds

"time": 1311

to_index integer Sequence number of the
destination matrix element in the
request

"to_index": 0

from_index integer Sequence number of the
departure matrix element in the
request

"from_index": 0

units string Unit of measurement in a
response "units": "kilometers"

If nothing is found, the response will look like this:

{"status_code":400,"status":"Bad Request"}
Example

POST request with curl utility

curl -X POST \
-H "Content-type: application/json" \
-H "Accept: application/json" \
-d

'{"sources":[{"lat":55.796932,"lon":37.537849},{"lat":55.801551,"lon":
37.531575}],"targets":[{"lat":55.790412,"lon":37.534313},{"lat":55.788
644,"lon":37.536507}],"costing":"pedestrian","id":"DM_Test"}' \
"https://geo.rustore.ru/api/dm?api_key=<YOUR_API_KEY>"

847

Reachable Area

Reachability area is a service that allows you to estimate the area counter curves that can be
reached from a selected location under the requested restriction (for travel time or distance
traveled). The estimated contour curves are returned as a closed line or polygon, which can be
displayed on the map.

/iso — call point for the reachability estimation service. Possible counter curve options:
● isochrones (equal travel time curves);
● isodistants (equal distance curves).

Request

The JSON request is sent in the HTTP body. The JSON request consists of required and
optional fields. Required parameters must be specified in the request url.

Simple JSON request example:

{
"locations":[

{
"lat":55.796932,
"lon":37.537849

}
],
"costing":"pedestrian",
"speed":5.6,
"contours":[

{
"time":15

},
{

"time":30
}

],
"id":"Iso_Test",
"generalize":5

}

This request generates two isochrones around the given coordinate, limiting the areas that are
potentially reachable for a pedestrian to pass from the coordinate in 15 and 30 minutes.
Pedestrian speed is estimated as 5.6 km/h.

Required url request parameters

848

Parameter
name

Format Description Example

api_key hex-string See “Access to
services” fa749bace6d8a3b1....

Required JSON fields in a HTTP request

Field
name

Format Description Example

locations list The reachability matrix estimation
point, where lat refers to latitude and
lon refers to longitude of the point in
degrees (6 decimal places are used)

"locations":
[

{
"lat":55.796932,
"lon":37.537849

}
]

contours list List of isoline parameters. Each
parameter determines the metric
(time or distance) and the contour
color that can be reached by the
selected metric when moving from
the point defined by locations:

● time — time in minutes (from
1 to 120) to reach the
contour boundary. Used to
create isolines;

● distance — distance in
kilometers (may be
fractional)

Maximum number of
contours in one request: 3
(three)

It is possible to set only one
metric for each contour:
either time or distance.

"contours":
[

{
"time":15

},
{

"time":30
}

]

Extra JSON fields in a HTTP request

849

Field name Format Description Example

speed float Speed: km/h.

Speed can only be
specified for walking
(costing=pedestrian)
and cycling
(costing=bicycle)
isochrones.

If the field is empty, the
default speed is used:
5 km/h for pedestrians
and 20 km/h for
bicycles.

"speed":20.1

costing string Type of transport for creating a
route:

● auto (default) —
automobile;

● truck (not supported)
— truck;

● pedestrian —
pedestrian;

● bicycle — bicycle.

"costing":"pedestrian"

id string Request ID that is returned
with the response, ensuring
the exact match between the
request and the response.

"id":"Iso_Test"

costing_options dict List of route estimation
parameters. Different transport
types have various options
and restrictions.

"costing_options":
{

"use_border_crossing":0,
"use_tolls":0

}

units string Distance unit in response:
● kilometers (by default)

— kilometers;
● miles — miles.

"units":"miles"

850

generalize float Acceptable variation in meters
when generalizing the contour
curve using the
Ramer–Douglas–Peucker
algorithm.

Reduced number of
curve points can lead
to the intersection of
adjacent contours and
to self-intersections.

"generalize":5

polygons boolean Defines a GeoJSON structure:
return polygons or reachable
contour curves in a response:
● false (default) — return
curves;
● true — return polygons.

"polygons":true

show_locations boolean Return along with contour
lines, initial points (specified in
locations) and points matched
to the road graph (from which
contour lines are created).

Possible values:
● false (default) — do

not return initial points
and points “attached”
to the road network;

● true — return the
above points.

"show_locations":true

Response

The returned response goes along with the GeoJSON structure and contains:

Field name Format Description Example

851

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://www.rfc-editor.org/rfc/rfc7946
https://www.rfc-editor.org/rfc/rfc7946

id string Request ID that is returned with the
response, ensuring the exact match
between the request and the response.

"id": "Iso_Test"

properties list Description of reachability time and type
for a contour line or polygon, where
contour — time value in minutes from
the request

"properties": {
"contour": 15,
"metric":"time"

}

852

geometry list Description of contour and its structure,
containing:

● coordinates — set of
coordinates describing a
polygonal reachable contour in:
[lon,lat] - longitude and latitude of
the point in degrees (6 decimal
places are used)

● type — possible structure values:
○ Polygon — for

reachability polygons;
○ LineString — for lines

that describe reachability
contour.

"geometry": {
"coordinates": [

[
37.537922,
55.798004

],
[

37.536846,
55.797928

],
[

37.536957,
55.796932

],
[

37.537849,
55.796383

],
[

37.539318,
55.796932

],
[

37.537922,
55.798004

]
],
"type": "LineString"

}

If the request is empty, the response will look like this:

{"status_code":400,"status":"Bad Request"}

Example

853

Request

curl -X POST \
-H "Content-type: application/json" \
-H "Accept: application/json" \
-d

'{"locations":[{"lat":55.796932,"lon":37.537849}],"costing":"pedestria
n","contours":[{"time":15,"color":"ff0000"},{"time":30,"color":"00ff00
"}],"id":"Iso_Test","generalize":5}' \
"https://geo.rustore.ru/api/iso?api_key=<YOUR_API_KEY>"

Response

{
"id": "Iso_Test",
"type": "FeatureCollection",
"features": [

{
"properties": {

"contour": 30
},
"geometry": {

"coordinates": [[37.550148, 55.814228], [37.549480,
55.814301], [37.549141, 55.814220], [37.548851, 55.814262],
[37.546852, 55.813473], [37.545994, 55.814072], [37.545681,
55.814106], [37.545200, 55.813931], [37.544643, 55.813137],
[37.544186, 55.812927], [37.544849, 55.812748], [37.545116,
55.812195], [37.545120, 55.811932], [37.544849, 55.811672],
[37.543846, 55.811695], [37.543369, 55.811932], [37.543404,
55.812378], [37.543674, 55.812927], [37.542850, 55.813446],
[37.542519, 55.813602], [37.541729, 55.813808], [37.540901,
55.813980], [37.539993, 55.814072], [37.539852, 55.814152],
[37.539547, 55.813931], [37.539261, 55.813522], [37.539066,
55.812931], [37.538933, 55.812855], [37.537849, 55.812763],
[37.532852, 55.812763], [37.531853, 55.812664], [37.531693,
55.812771], [37.531349, 55.813435], [37.530849, 55.813683],
[37.527847, 55.813553], [37.527512, 55.813591], [37.526852,
55.813824], [37.525101, 55.812931], [37.525043, 55.812744],
[37.525280, 55.812359], [37.525257, 55.811932], [37.525066,
55.811714], [37.524853, 55.811634], [37.522850, 55.811668],
[37.520851, 55.811581], [37.520531, 55.811611], [37.519794,

854

55.811874], [37.518070, 55.811714], [37.517254, 55.811531],
[37.516560, 55.811222], [37.514851, 55.810818], [37.514248,
55.810532], [37.512482, 55.810295], [37.511650, 55.809933],
[37.510849, 55.809696], [37.510563, 55.809216], [37.509514,
55.808933], [37.508846, 55.808617], [37.508575, 55.808655],
[37.507908, 55.808990], [37.507851, 55.809124], [37.506790,
55.808994], [37.506432, 55.808353], [37.506348, 55.807926],
[37.506130, 55.807652], [37.505852, 55.807522], [37.504852,
55.807327], [37.504086, 55.806927], [37.504608, 55.805935],
[37.504890, 55.804932], [37.505463, 55.804539], [37.506413,
55.803490], [37.506596, 55.802933], [37.506027, 55.801758],
[37.505489, 55.801296], [37.505211, 55.800571], [37.504852,
55.800243], [37.503761, 55.800022], [37.503632, 55.799149],
[37.503334, 55.798931], [37.504494, 55.797573], [37.505337,
55.796932], [37.506489, 55.795567], [37.506851, 55.795300],
[37.507401, 55.794479], [37.508106, 55.794186], [37.508385,
55.793926], [37.507927, 55.791931], [37.508575, 55.791653],
[37.509132, 55.791214], [37.509377, 55.790932], [37.509697,
55.789928], [37.510567, 55.789654], [37.510849, 55.789474],
[37.511265, 55.789516], [37.511852, 55.789795], [37.512287,
55.789368], [37.513012, 55.789093], [37.514851, 55.789059],
[37.516853, 55.789448], [37.517147, 55.788933], [37.517376,
55.787933], [37.518219, 55.787567], [37.518467, 55.787548],
[37.518852, 55.787048], [37.520317, 55.787395], [37.520351,
55.786930], [37.519840, 55.785942], [37.519733, 55.784813],
[37.519814, 55.783936], [37.520851, 55.783707], [37.522850,
55.783810], [37.523712, 55.783798], [37.524124, 55.783657],
[37.524662, 55.783737], [37.524937, 55.782932], [37.525475,
55.782558], [37.526855, 55.782169], [37.527237, 55.781937],
[37.527851, 55.781296], [37.528114, 55.781197], [37.528477,
55.781303], [37.529850, 55.781086], [37.530849, 55.781151],
[37.531528, 55.780933], [37.531853, 55.780731], [37.532845,
55.780922], [37.533852, 55.780361], [37.534851, 55.780132],
[37.535851, 55.780499], [37.536850, 55.780613], [37.537590,
55.780933], [37.538418, 55.781933], [37.538094, 55.782177],
[37.536850, 55.782494], [37.536671, 55.782757], [37.536758,
55.783024], [37.537849, 55.783115], [37.538853, 55.783100],
[37.539192, 55.783272], [37.539516, 55.783272], [37.539516,
55.783596], [37.539848, 55.784061], [37.542732, 55.784050],
[37.543095, 55.784172], [37.543610, 55.784172], [37.543610,
55.784691], [37.543850, 55.785027], [37.543968, 55.784927],

855

[37.543980, 55.784069], [37.544151, 55.783630], [37.544151,
55.783234], [37.544548, 55.783234], [37.544849, 55.783089],
[37.545853, 55.783096], [37.546055, 55.782932], [37.545853,
55.782459], [37.544849, 55.782249], [37.544636, 55.782143],
[37.544563, 55.781651], [37.544788, 55.780872], [37.544926,
55.780857], [37.545509, 55.781269], [37.546185, 55.781269],
[37.546432, 55.781349], [37.547852, 55.781448], [37.548126,
55.781658], [37.548252, 55.781929], [37.548279, 55.782932],
[37.548252, 55.783337], [37.547714, 55.783791], [37.547665,
55.783928], [37.547745, 55.785042], [37.547852, 55.785114],
[37.548851, 55.785156], [37.549404, 55.785378], [37.549690,
55.786087], [37.549850, 55.786221], [37.551277, 55.786362],
[37.551544, 55.786240], [37.551849, 55.786335], [37.552105,
55.786674], [37.552048, 55.787128], [37.551849, 55.787205],
[37.551548, 55.787628], [37.551472, 55.787937], [37.551559,
55.788227], [37.551849, 55.788536], [37.552174, 55.788609],
[37.552494, 55.788929], [37.552151, 55.789234], [37.550850,
55.789551], [37.550755, 55.789837], [37.550903, 55.789989],
[37.552853, 55.789989], [37.552979, 55.789814], [37.552906,
55.788986], [37.553734, 55.789055], [37.553852, 55.788998],
[37.554855, 55.788998], [37.555008, 55.788773], [37.555096,
55.788177], [37.555695, 55.788090], [37.555851, 55.788006],
[37.556850, 55.788013], [37.556938, 55.787930], [37.556973,
55.785805], [37.556450, 55.785332], [37.556080, 55.783703],
[37.555851, 55.783459], [37.555420, 55.783360], [37.554760,
55.783024], [37.554733, 55.782936], [37.555012, 55.782093],
[37.555439, 55.781933], [37.555851, 55.781876], [37.556301,
55.782482], [37.556850, 55.782600], [37.558849, 55.782555],
[37.559853, 55.782436], [37.560852, 55.782436], [37.561218,
55.782566], [37.561405, 55.782490], [37.561852, 55.782536],
[37.562847, 55.782425], [37.563286, 55.782501], [37.563850,
55.782726], [37.564850, 55.782578], [37.565845, 55.782696],
[37.566853, 55.782688], [37.568306, 55.782932], [37.568703,
55.783081], [37.569214, 55.783569], [37.569412, 55.783932],
[37.569366, 55.784931], [37.569077, 55.785160], [37.568851,
55.785187], [37.568340, 55.785419], [37.567787, 55.785931],
[37.568188, 55.786594], [37.568398, 55.787384], [37.568851,
55.787849], [37.569027, 55.787930], [37.568558, 55.788933],
[37.568157, 55.789230], [37.567852, 55.789318], [37.567600,
55.789680], [37.567585, 55.789932], [37.567852, 55.790161],
[37.568855, 55.790195], [37.569851, 55.790462], [37.570263,

856

55.790337], [37.570557, 55.789932], [37.570576, 55.789658],
[37.570850, 55.789375], [37.571117, 55.789665], [37.571796,
55.789932], [37.572170, 55.790607], [37.572571, 55.790936],
[37.571640, 55.791931], [37.571121, 55.792206], [37.570133,
55.792931], [37.569618, 55.793930], [37.568855, 55.794933],
[37.568947, 55.795933], [37.569851, 55.796734], [37.570312,
55.796932], [37.570080, 55.797165], [37.569851, 55.797222],
[37.569534, 55.797619], [37.569134, 55.798931], [37.568851,
55.799126], [37.567608, 55.799686], [37.567398, 55.799927],
[37.567631, 55.800930], [37.568256, 55.801937], [37.568562,
55.802933], [37.568115, 55.803204], [37.567337, 55.803417],
[37.566853, 55.803654], [37.566193, 55.804276], [37.565849,
55.804287], [37.564850, 55.804539], [37.562851, 55.804642],
[37.562603, 55.804688], [37.562321, 55.804928], [37.562374,
55.805931], [37.562851, 55.806541], [37.563114, 55.806667],
[37.563370, 55.806927], [37.563446, 55.807926], [37.563210,
55.808292], [37.562851, 55.808395], [37.561855, 55.808449],
[37.561455, 55.808323], [37.561081, 55.807697], [37.560852,
55.807652], [37.560570, 55.807930], [37.560551, 55.808628],
[37.560448, 55.808937], [37.560158, 55.809238], [37.559292,
55.809376], [37.558571, 55.809658], [37.557850, 55.809826],
[37.557652, 55.809132], [37.557041, 55.808743], [37.556850,
55.808704], [37.555855, 55.809750], [37.555717, 55.809799],
[37.555286, 55.810364], [37.554852, 55.811588], [37.554558,
55.811642], [37.553555, 55.812637], [37.551849, 55.813408],
[37.550850, 55.813587], [37.550594, 55.813931], [37.550148,
55.814228]],

"type": "LineString"
},
"type": "Feature"

},
{

"properties": {
"contour": 15

},
"geometry": {

"coordinates": [[37.538876, 55.805958], [37.537895,
55.805969], [37.536850, 55.806187], [37.534851, 55.806030],
[37.533852, 55.806026], [37.530849, 55.805218], [37.530231,
55.804928], [37.530651, 55.803932], [37.530163, 55.803619],
[37.530067, 55.802933], [37.529850, 55.802757], [37.528851,

857

55.802734], [37.528469, 55.802933], [37.528511, 55.803272],
[37.529060, 55.803932], [37.528996, 55.804081], [37.527851,
55.804409], [37.526024, 55.804108], [37.524857, 55.803989],
[37.523849, 55.803200], [37.522850, 55.803543], [37.521851,
55.803284], [37.521061, 55.802933], [37.521778, 55.800926],
[37.521568, 55.799931], [37.521996, 55.798927], [37.522476,
55.798553], [37.522850, 55.798439], [37.523849, 55.798332],
[37.524094, 55.798180], [37.524254, 55.797932], [37.524155,
55.797630], [37.523849, 55.797279], [37.523552, 55.797230],
[37.522991, 55.796932], [37.523434, 55.795933], [37.523846,
55.795574], [37.524853, 55.795555], [37.525974, 55.795811],
[37.526047, 55.795933], [37.527344, 55.796440], [37.527584,
55.796932], [37.527706, 55.797081], [37.527851, 55.797115],
[37.528137, 55.796646], [37.528137, 55.796215], [37.528564,
55.796215], [37.528851, 55.796078], [37.529942, 55.796028],
[37.530178, 55.795601], [37.530178, 55.795261], [37.530521,
55.795261], [37.530849, 55.795101], [37.531178, 55.795261],
[37.531521, 55.795261], [37.531521, 55.795601], [37.531769,
55.796017], [37.533852, 55.796032], [37.534050, 55.796127],
[37.534657, 55.796127], [37.534657, 55.796738], [37.534790,
55.796989], [37.535896, 55.796978], [37.535950, 55.794933],
[37.535625, 55.794704], [37.535076, 55.794704], [37.534946,
55.792835], [37.534645, 55.792721], [37.534058, 55.792721],
[37.533852, 55.792637], [37.531853, 55.792431], [37.531441,
55.792336], [37.530727, 55.791931], [37.531166, 55.790932],
[37.531544, 55.790623], [37.532330, 55.790409], [37.533852,
55.790245], [37.534039, 55.790123], [37.534431, 55.789516],
[37.535152, 55.789234], [37.535465, 55.788933], [37.535500,
55.788578], [37.535851, 55.788170], [37.536205, 55.788574],
[37.536320, 55.788933], [37.536610, 55.789173], [37.536850,
55.789261], [37.538105, 55.789185], [37.538727, 55.788811],
[37.539024, 55.788757], [37.539921, 55.788868], [37.540951,
55.788834], [37.541851, 55.789043], [37.542439, 55.789349],
[37.542850, 55.789448], [37.543850, 55.789272], [37.544254,
55.789337], [37.544502, 55.789280], [37.544849, 55.789421],
[37.546322, 55.789463], [37.546852, 55.789597], [37.547276,
55.789356], [37.547852, 55.789242], [37.548000, 55.789787],
[37.548676, 55.789757], [37.549397, 55.789932], [37.549641,
55.790142], [37.549850, 55.790207], [37.551849, 55.790260],
[37.553345, 55.790436], [37.553852, 55.790600], [37.554203,
55.791931], [37.554337, 55.792934], [37.553852, 55.793671],

858

[37.553501, 55.793930], [37.553276, 55.794353], [37.553158,
55.794933], [37.552265, 55.795349], [37.551750, 55.795837],
[37.551640, 55.796932], [37.551228, 55.797928], [37.551395,
55.798931], [37.551365, 55.799931], [37.552040, 55.800930],
[37.552097, 55.801933], [37.551849, 55.802193], [37.551334,
55.802418], [37.548805, 55.802883], [37.548664, 55.803932],
[37.547852, 55.804455], [37.547508, 55.804588], [37.546852,
55.804703], [37.545853, 55.805096], [37.541851, 55.805519],
[37.540852, 55.805511], [37.539623, 55.805702], [37.538876,
55.805958]],

"type": "LineString"
},
"type": "Feature"

}
]

}

859

Best Route Planner

Best route planner — service that allows you to estimate the optimal route for a set of arbitrary
target points. Car, pedestrian and bicycle graphs can be used to create the best route.

/optimal_route — call point for the best route estimation service. For an input set of
coordinates, it creates an optimized route and generates a list of coordinates in the order they
are visited.

Request

The JSON request is sent with required and optional request parameters.
Simple request example:

{"locations":[{"lon":49.22088,"lat":55.77055},{"lon":49.21999,"lat":55
.77246},{"lon":49.21933,"lat":55.77222},{"lon":49.22999,"lat":55.78246
},{"lon":49.26842,"lat":55.75043}],"costing":"pedestrian","directions_
options":{"units":"miles"},"id":"optimal_route_test"}

This request calculates the best pedestrian route starting at the first location in the "locations"
list and ending at the last location.

Required parameters

Field
name

Format Description Example

api_key hex-stri
ng

See “Access to services”
api_key=fa749bace6d8a3b1....

860

locations list List of points to be sorted
according to the order in which
they were visited. The first and
last points in the list remain as
such, and the points between
them can be rearranged to
optimize the route in time.

Minimum number of points: 2.

"locations":
[

{
"lat":55.77055,
"lon":49.22088

},
{

"lat":55.796932,
"lon":37.537849

}
]

Extra parameters

Field name Format Description Example

costing string Transport type for planning a
route:

● auto (default) —
automobile;

● truck — cargo transport;
● pedestrian —

pedestrian route;
● bicycle — bicycle route.

"costing":"pedestrian"

id string Request ID that is returned with
the response, ensuring the
exact match between the
request and the response.

"id":"optimal_route_test"

costing_opt
ions

dict List of route calculation
parameters. Different transport
types have various options and
restrictions similar to those used
in route creating service

Moreover, there is a
"shortest" option, set as
false by default. If
shortest=false, then the
route is time optimized. If
shortest=true, then the
route is distance
optimized.

"costing_options":{
"auto":{

"shortest":true,
"use_tolls":0

}
}

861

units string Distance unit in response:
● kilometers (by default)

— kilometers;
● miles — miles.

"units":"miles"

fix_destinat
ion

bool Flag indicating whether the last
of the listed coordinates in
locations should be fixed as the
finish line. If
fix_destination=true, then the
last of the specified locations in
the service response is
guaranteed to be the finish
point. If fix_destination=false,
then the last of the specified
locations may be one of the
intermediate route points.
Default value: true.

"fix_destination":"false"

Response

The returned response goes along with the GeoJSON structure and contains:

Field
name

Format Description Example

id string Request ID that is returned
with the response, ensuring
the exact match between the
request and the response.

"id": "optimal_route_test"

862

https://www.rfc-editor.org/rfc/rfc7946

trip object
map

Route information is defined
by the following parameters:

● locations — list of
points sorted for the
best route time;

● legs — information
about route polyline;

● summary — brief
information about the
route;

● status_message —
textual interpretation
of the request
execution status;

● status — request
execution status;

● units — units of
measurement;

● language —
language in which
information about
maneuvers is
presented.

{
"trip":{

"locations":[
{

"type":"break",
"lat":43.1332,
"lon":131.9113,
"original_index":0

},
{

"type":"break",
"lat":50.266,
"lon":127.5356,
"original_index":1

}
],
"legs":[

{
"summary":{

"min_lat":43.131777,

"min_lon":127.535648,

"max_lat":50.291427,

"max_lon":132.040931,
"time":58965.898,
"length":1424.861,
"cost":54399.585

},
"shape":"shape. In

this example we skip it."
}

],
"summary":{

"min_lat":43.131777,
"min_lon":127.535648,
"max_lat":50.291427,
"max_lon":132.040931,
"time":58965.898,
"length":1424.861,
"cost":54399.585

},
"status_message":"Found

route between points",

863

"status":0,
"units":"kilometers",
"language":"ru-RU"

},
"id":"my_route"

}

If the request is empty, the response will look like this:

{"status_code":400,"status":"Bad Request"}

Example

Request

curl -X POST \
-H "Content-type: application/json" \
-H "Accept: application/json" \
-d

'{"locations":[{"lon":49.22088,"lat":55.77055},{"lon":49.21999,"lat":5
5.77246},{"lon":49.26842,"lat":55.75043}],"costing":"pedestrian","dire
ctions_options":{"units":"miles"},"id":"optimal_route_test"}' \

"https://geo.rustore.ru/api/optimal_route?api_key=<YOUR_API_KEY>"

Response

{
"trip": {

"locations": [{
"type": "break",
"lat": 55.77055,
"lon": 49.22088,
"original_index": 0

}, {
"type": "break",
"lat": 55.77246,
"lon": 49.21999,
"original_index": 1

}, {
"type": "break",
"lat": 55.75043,

864

"lon": 49.26842,
"original_index": 2

}],
"legs": [{

"summary": {
"min_lat": 55.77065,
"min_lon": 49.21999,
"max_lat": 55.772514,
"max_lon": 49.220883,
"time": 188.317,
"length": 0.164,
"cost": 193.317

},
"shape": "u`~jiBepe{|AMlh@gq@o@or@m@eMMAtP"

}, {
"summary": {

"min_lat": 55.750237,
"min_lon": 49.21999,
"max_lat": 55.772515,
"max_lon": 49.269982,
"time": 3543.527,
"length": 3.113,
"cost": 3644.115

},
"shape":

"cuakiBmxc{|A@uPEiUHgkAF_n@BgYHghAPwvBFgr@XcrD@{ZBmGJupAG_SHw\\D}RNoaC
`@cNfAyGxHaGja@Y~JmFxKyLlBuBfUy[pI_Ux@uBfNkb@rFwTvMgx@dBkKlD}SrFs]bFa`
@pCgTdI{i@fC}R`@aD~PklAzBwObLqw@vIuf@lLop@p@oBrJuYfNmYbAwBtJwPfCuBxIkH
zMqIh_@sRfCWb@}SqAu`@_GcfB_Bqh@yBmk@w@}M{D}}@qG}yAuBqZ|D_G~oCshAhQmAzW
iRla@wYlbAw}@fCsFj{@ijBjWij@zZsp@fm@eqAdAgD`Ssn@dBqFNea@xVavAdZajBxEom
A|AeeBhHiNbLcAnAuGpT|VlD~DpaBf|@vkA|q@|eBjOv`@b[tPwGzDtA`s@`_AtGUjo@{v
AvUmm@iJyL"

}],
"summary": {

"min_lat": 55.750237,
"min_lon": 49.21999,
"max_lat": 55.772515,
"max_lon": 49.269982,
"time": 3731.844,
"length": 3.278,
"cost": 3837.433

865

},
"status_message": "Found route between points",
"status": 0,
"units": "miles",
"language": "ru-RU"

},
"id": "optimal_route_test"

}

866

Polyline Route Decoding

The route creation service uses an encoded polyline to store a series of latitude and longitude
coordinates as a single string. Polyline coding greatly reduces the response size.

To decode a polyline into a series of coordinates, you can follow the steps below.

JavaScript

polyline.decode = function(str, precision) {
var index = 0,

lat = 0,
lng = 0,
coordinates = [],
shift = 0,
result = 0,
byte = null,
latitude_change,
longitude_change,
factor = Math.pow(10, precision || 6);

// Coordinates have variable length when encoded, so just keep
// track of whether we've hit the end of the string. In each
// loop iteration, a single coordinate is decoded.
while (index < str.length) {

// Reset shift, result, and byte
byte = null;
shift = 0;
result = 0;

do {
byte = str.charCodeAt(index++) - 63;
result |= (byte & 0x1f) << shift;
shift += 5;

} while (byte >= 0x20);

latitude_change = ((result & 1) ? ~(result >> 1) : (result >>
1));

shift = result = 0;

867

do {
byte = str.charCodeAt(index++) - 63;
result |= (byte & 0x1f) << shift;
shift += 5;

} while (byte >= 0x20);

longitude_change = ((result & 1) ? ~(result >> 1) : (result >>
1));

lat += latitude_change;
lng += longitude_change;

coordinates.push([lat / factor, lng / factor]);
}

return coordinates;
};
C++ 11

#include <vector>

constexpr double kPolylinePrecision = 1E6;
constexpr double kInvPolylinePrecision = 1.0 / kPolylinePrecision;

struct PointLL {
float lat;
float lon;

};

std::vector<PointLL> decode(const std::string& encoded) {
size_t i = 0; // what byte are we looking at

// Handy lambda to turn a few bytes of an encoded string into an
integer
auto deserialize = [&encoded, &i](const int previous) {
// Grab each 5 bits and mask it in where it belongs using the

shift
int byte, shift = 0, result = 0;
do {
byte = static_cast<int>(encoded[i++]) - 63;
result |= (byte & 0x1f) << shift;
shift += 5;

868

} while (byte >= 0x20);
// Undo the left shift from above or the bit flipping and add to

previous
// since its an offset
return previous + (result & 1 ? ~(result >> 1) : (result >> 1));

};

// Iterate over all characters in the encoded string
std::vector<PointLL> shape;
int last_lon = 0, last_lat = 0;
while (i < encoded.length()) {
// Decode the coordinates, lat first for some reason
int lat = deserialize(last_lat);
int lon = deserialize(last_lon);

// Shift the decimal point 5 places to the left
shape.emplace_back(static_cast<float>(static_cast<double>(lat) *

kInvPolylinePrecision),
static_cast<float>(static_cast<double>(lon) *

kInvPolylinePrecision));

// Remember the last one we encountered
last_lon = lon;
last_lat = lat;

}
return shape;

}

Python

#!/usr/bin/env python

import sys

#six degrees of precision in valhalla
inv = 1.0 / 1e6;

def decode(encoded):
"""Decodes route polyline which is returned by rose."""

869

decoded = []
i = 0
previous_coords = {'lat': 0, 'lon': 0}
while i < len(encoded):

coords = dict()
for coord_name in ('lat', 'lon'):

coord = 0
shift = 0
byte = 0x20
Keep decoding bytes until you have this coord.
while byte >= 0x20:

byte = ord(encoded[i]) - 63
i += 1
coord |= (byte & 0x1f) << shift
shift += 5

Get the final value adding the previous offset and
remember it for the next.
coords[coord_name] = previous_coords[coord_name] + (

~(coord >> 1)
if coord & 1
else (coord >> 1)

)
Scale by the precision and chop off long coords.
Also flip the positions so its the far more standard
(lon, lat) instead of (lat, lon).
decoded.append([

float(f"{coords['lon'] * inv:.6f}"),
float(f"{coords['lat'] * inv:.6f}"),

])
previous_coords = coords

return decoded

print decode(sys.argv[1])

870

Maps Mobile SDK

Maps SDK allows you to add a map to your iOS and Android apps.

871

Android
How to connect Maps Mobile SDK

To connect Maps SDK, you need to add a maven repository link to the main gradle file of the
project:

allprojects {
repositories {

maven {
url =

uri("https://maven.pkg.github.com/GEORS/MAPS-SDK-ANDROID")
credentials {

username = "GITHUB_USER"
password = "GITHUB_TOKEN"

}
} } }

You should also specify the dependency in the gradle file, as shown in the example.

Dependency injection

implementation('ru.rustore.geo:mapkit:x.x.x')
where x.x.x — SDK version.

We recommend using the latest SDK version. Release versions of SDK are numbered
1.0.x

The latest SDK version is available at:
https://github.com/geors?tab=packages&repo_name=maps-sdk-android

872

https://github.com/geors?tab=packages&repo_name=maps-sdk-android

How to use Maps Mobile SDK

It is required to initialize the card global settings before using any other SDK component, the
best option is in the Application class successor. The global settings object is:

class MapViewConfig(
val apiKey: String, // unique key to grant access to SDK

)

install the object:

MapGlobalConfig.setMapGlobalConfig(
MapViewConfig(

apiKey = apiKey
)

)

To start working with SDK, a number of classes are provided that implement View in one form or
another:

data class MapStartOptions(
val center: LatLon, // initial map location point (only for

lat, lon)
val zoomLevel: Float, // initial zoom level (zoomLevel)
val style: MapStyle, // map style, you can select the

corresponding enum or use your own
val compassLocationMode: CompassLocationMode, // compass

setting, can be selected from the corresponding enum
val logoConfig: LogoConfig // logo configuration

)

You need to set the start settings as shown in the example.

MapGlobalConfig.setMapStartOptions(MapStartOptions(...))

LogoConfig example

873

data class LogoConfig(
val logoAlignment: Alignment, // Alignment: BottomRight,

BottomLeft, TopRight, TopLeft
val logoAdditionalPaddings: AdditionalPaddings

)

To work with the SDK, a number of classes are provided that implement View in one form or
another:

- MapView is the main view in the SDK that displays the map;
- ZoomView is used to display + and - controls to zoom in and out of the map;
- CurrentLocationView is a button to focus the map on the current user position and follow

his position;
- CompassView is a component that displays the direction of a physical device relative to

the north.
To display these controls, you must place them in the xml file.

<FrameLayout
android:id="@+id/mainLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
...>

<ru.rustore.geo.views.MapView
android:id="@+id/mapView"
android:layout_width="match_parent"
android:layout_height="match_parent" />

</FrameLayout>

Map example

<FrameLayout
android:id="@+id/mainLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
...>

<ru.mail.maps.sdk.views.MapView
android:id="@+id/mapView"
android:layout_width="match_parent"
android:layout_height="match_parent" />

874

</FrameLayout>

This may be enough to work with the map if other elements are not required.

Conrols example

<FrameLayout
xmlns:custom="http://schemas.android.com/apk/res-auto"
android:id="@+id/mainLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
...>

<ru.rustore.geo.views.MapView
android:id="@+id/mapView"
android:layout_width="match_parent"
android:layout_height="match_parent" />

<ru.rustore.geo.views.ZoomView
android:id="@+id/zoomView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
...
custom:mapView="@+id/mapView" />

<ru.rustore.geo.views.CompassView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
...
custom:mapView="@+id/mapView" />

<ru.rustore.geo.views.CurrentLocationView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
...
custom:mapView="@+id/mapView"/>

</FrameLayout>

All elements will be displayed on top of the map and will be linked to it. To call the map methods
directly, you need to get the Map entity, for this you need to call the getMapAsync method on
the map visual control:

875

mapView = findViewById(R.id.mapView)
mapView.getMapAsync { map -> // the Map object

...
}

For the CurrentLocationView and CompassView to work correctly, you must pass an
implementation of the LocationSource interface to the Map object, for example:

map.setLocationSource(locationSource)

The LocationSource interface provides the following methods:

fun activate(listener: (mapLocation: MapLocation) -> Unit) // it is
used to start obtaining GPS fixes from the system
fun deactivate() // it is called to stop obtaining GPS data

SDK itself calls the activate and deactivate methods when it is required according to internal
logic. When calling activate methods, listener is passed as a parameter, which must be called
when each new gps fix is received from MapLocation type arguments:

data class MapLocation(
val latitude: Double? = null, [-90, 90]
val longitude: Double? = null, [-180, 180]
val speed: Float? = null, //
val bearing: Float? = null,[0, 360]
val accuracy: Float? = null,
val altitude: Double? = null

)

each of the class fields can be null, but for correct operation it is necessary to substitute the
corresponding values received from the system. Apart from the setLocationSource method, the
Map object has the following methods:

fun zoomIn(step: Float = .5f, animated: Boolean = true)
// zoom in on a map location, where step — step map zoom value

fun zoomOut(step: Float = .5f, animated: Boolean = true)
// zoom out on a map location, where step — step map zoom value

fun setBearing(bearing: Float, animated: Boolean = true)

876

// sets a map direction, bearing is kept
// within the semi interval [0, 360)

fun setZoom(zoom: Float, animated: Boolean = true)
// sets a map zoom level, zoom is kept
// within the semi interval (0, 20]

fun addMarker(marker: MarkerEntity)
// add a marker to the map, where MarkerEntity — marker model,
// id — unique ID for each marker,
// coordinates — coordinates of the point to which
// a marker will be linked (only latitude and longitude
// are taken into account, the rest are null)
// and image — one of MarkerImage enum

fun addMarker(markers: List<MarkerEntity>)
// add a list of markers to a map

fun removeMarker(id: String)
// delete a marker with a specified ID

fun removeAllMarkers()
// delete all markers from a map

fun showPopUp(markerId: String, content: String)
// display a Pop-up window above the marker,
// markerId — marker ID to which the window will be linked;
// content — an html string to be displayed in the window

fun hidePopUp(markerId: String)
// hide a Pop-up window for the specific marker ID

fun setOnMarkerClickListener(onCLickListener: (id: String, location:
MapLocation) -> Unit)

// add callback method that will be called
// when the user clicks on one of the markers
// id — marker ID clicked by the user
// location — coordinates that match the marker
// (only latitude and longitude are taken into account,
// the rest are null)

877

fun removeMarkerClickListener()
// remove the callback method responsible for clicking on the

marker

fun moveMarker(id: String, location: MapLocation, animated: Boolean,
duration: Double)

// set marker movement with the corresponding ID
// to the position location. animated indicates whether
// marker movement animation is needed
// duration — move animation duration

fun addOnErrorListener(onErrorListener: (error: MapError) -> Unit)
// add a callback that will be called in case
// of any errors in SDK. All errors are
// descendants of the MapError class

fun setCenter(center: MapLocation, animated: Boolean)
// move the map so that the screen center would match
// the center parameter (only latitude and longitude
// are taken into account, the rest are null)

fun changeStyle(style: MapStyle)
// change the map style with no reinitialization required

fun enableDragPan(enable: Boolean)
// enable or disable gesture control

fun enableZoomRotate(enable: Boolean)
// enable or disable map zoom and rotation by a user

fun setOnZoomChangedListener(listener: (zoom: Double) -> Unit)
// set the callback method that will be called when the map scale

changes

fun removeZoomChangedListener()
// remove the callback method responsible for changing the map

scale

fun setOnMapClickListener(onClickListener: (location: MapLocation,
screenLocation: ScreenLocation) -> Unit)

// set the callback method responsible for the map click event

878

fun setOnMapLongClickListener(onClickListener: (location: MapLocation,
screenLocation: ScreenLocation) -> Unit)

// set the callback method responsible for the long click event

fun addLayer(layer: Layer)
// add a new layer to the map

fun addMapDataSource(source: MapDataSource)
// add a new map data source

fun removeSource(sourceId: String)
// remove data source by ID

fun removeLayer(layerId: String)
// remove map layer by ID

fun addCluster(cluster: Cluster)
// add a cluster to the map, where the Cluster object contains:
// id - cluster ID, markers - list of marker objects,
// radius - cluster radius in meters,
// textColor - text color in hex ("#ff0000"),
// backgroundColor - background color in hex ("#ffffff")

fun removeCluster(id: String)
// remove a cluster by ID

Using these methods, you can manually control the map, regardless of the elements provided
by SDK. All SDK methods must be called on the main thread. Callbacks are also returned to the
main thread.

To use the addMapDataSource method, you must create a MapDataSource object, which can
be one of three types: CircleSource, GeojsonSource, and PolylineSource.

class CircleSource(
val id: String, // unique data source ID
val center: LatLon, // circle center
val radius: Double, // radius in meters
val steps: Int // number of edges in circle interpolation

)

class GeojsonSource(

879

val id: String, // unique data source ID
val geojsonData: ByteArray // GeoJson string as ByteArray

)

class PolylineSource(
val id: String, // unique data source ID
val polylineData: String // string-encoded polyline info

)
To add the functionality of geocoding and/or isochrones a dependency is required.

Dependency injection

implementation('ru.mail.maps:vk-maps-api:x.x.x')

Next, you need to create an entity of the GeocodeApi interface through the Builder:

val mapsApi = VkMapsApi.Builder().apiKey(API_KEY).build()

To use the geocode and isochrones functionality, you must call the geocode and iso
methods, respectively.

Geocoding

val response = mapsApi.geocode("Moscow")

Isochrones

val response = mapsApi.iso(locations = listOf(LatLon()),
contours = listOf(

Contour(time = 15, color = "ff0000", distance = 0f),
Contour(time = 30, color = "00ff00", distance = 0f)

)
)

A ResponseWrapper object is returned that can contain a Success geocoding result and a list of
results of type Result in the value field, or an error of type HttpError or GeneralError.
System requirements

Minimum supported Android version: 7.0 (min sdk 24)

880

iOS

How to add the library

The library is connected through the Swift Package Manager.

In Xcode, select File -> Swift Packages -> Add Package Dependency from the menu and enter
https://github.com/geors/maps-sdk-ios in the repository address field.

Select Maps SDK and add it to your application.

How to use the library

Import MapsSDK into the corresponding map file.

import MapsSDK

To get started with the map, you need:

1. Create a MapView object.
2. Configure the map.
3. Specify a map delegate.

Create MapView Object

let mapView = MapView()

Configure MapView Object

Create a MapViewConfig object containing the following information:

● API key to work with SDK;
● map center coordinates;
● entry level zoom;
● tile style.

Setup and configuration

881

https://github.com/geors/maps-sdk-ios
https://github.com/geors/maps-sdk-ios

let mapConfig = MapViewConfig(
apiKey: "##API_KEY##",
center: Coordinates(lng: 33, lat: 55),
zoomLevel: 11,
style: .automatic

)
mapView.setup(mapConfig)

zoomLevel can be set from 0 (farthest) to 22 (closest). The style of styles can take one of
the following values:

● .automatic — automatic style selection depending on isDriveMode and the current
device color scheme;

● .main — base style;
● .light — light style;
● .dark — dark style;
● .navMain — base style for navigation with an emphasis on roads;
● .navDark — dark style for navigation with an emphasis on roads

Map delegate specification

The delegate must implement the requirements of the MapViewDelegate protocol. It will be
used to process notifications from the map about various events, such as:

● map loaded;
● user-triggered event (such as a touch) received;
● events triggered by map controls, and so on.

Integrate a map into an app

import MapsSDK

...

override func viewDidLoad() {
let mapView = MapView()

882

let mapConfig = MapViewConfig(
apiKey: "##API_KEY##",
center: Coordinates(lng: 33, lat: 55),
zoomLevel: 11,
style: .automatic

)

mapView.setup(mapConfig)
mapView.delegate = self
view.addSubview(mapView)

}

Map management

Set user's current coordinate and direction
mapView.setCurrentLocation(Coordinates(lng: 33, lat: 55), bearing: 0,
accuracy: 0)

Set map direction
mapView.setBearing(90, animated: true)

Set map center coordinates
mapView.setCenter(Coordinates(lng: 33, lat: 55), animated: true)

Set initial zoom level
mapView.setZoom(11, animated: true)

Enable/disable control components
mapView.isZoomButtonsHidden = true
mapView.isCompassHidden = true
mapView.isMyLocationButtonHidden = true

Enable/disable gestures

mapView.isDragPanEnabled = true
mapView.isZoomRotateEnabled = true

Markers
When creating a marker, you need to specify its identifier, coordinate and image.

For a picture, it is recommended to use a 48x48 image. The image is displayed on the map in
such a way that the middle of the bottom edge appears to be at the specified coordinate. You
can use the available images or use your own ones.

883

Adding individual markers

let marker1 = Marker(id: "marker_id_1",
coords: Coordinates(lng: 33, lat: 55),
pin: .electricPin)

let marker2 = Marker(id: "marker_id_2",
coords: Coordinates(lng: 33, lat: 55),
pin: .electricInfo,
alignment: .bottomLeft)

In this case, images are transferred from a set of images preinstalled in the SDK. If
necessary, you can upload your own image.

let markerImage = UIImage(...)
let marker3 = Marker(id: "marker_id_3",

coords: Coordinates(lng: 33, lat: 55),
pin: .custom(markerImage),
alignment: .center)

By default, marker alignment is set to .center, which means that the center of the marker is
aligned with the passed coordinates. You have the ability to flexibly control this parameter
by choosing one of the many available values, or pass an arbitrary offset.

let marker4 = Marker(id: "marker_id_4",
coords: Coordinates(lng: 33, lat: 55),
pin: .electricPhoto,
alignment: .bottom)

let marker5 = Marker(id: "marker_id_5",
coords: Coordinates(lng: 33, lat: 55),
pin: .electricStar,
alignment: .center(offsetByX: 10, byY:

-10))

To place a marker on the map, use the addMarker(_: Marker) method.

Add a single marker
mapView.addMarker(marker1)

884

mapView.addMarker(marker2)

Add markers in an array
mapView.addMarkers([marker1, marker2])

Delete a single marker via its ID
mapView.removeMarker(id: "marker_id_1")

Delete all markers
mapView.removeAllMarkers()

Tracing the marker click event

func MapDelegate: MapViewDelegate{
func mapView(_ map: MapView, didSelectMarkerID markerID:

String) {
// ...
// markerID

}
}

Additionally, when any marker is clicked, the delegate's MapViewDelegate.mapView(_:
MapView, didReceiveEvent: MapEvent) method is called. In this case, the
didReceiveEvent.type property is set to .clickOnMarker.

func MapDelegate: MapViewDelegate{
func mapView(_ map: MapView, didReceiveEvent event: String) {

// ...
// event.type = .clickOnMarker
// ...

}
}

Pop-ups

To display a pop-up on the map, you need to specify marker ID and pop-up text.

mapView.displayPopup(markerId: "marker_id_1", content: "Hello world")

To hide the pop-up, you need to specify the marker ID.

885

mapView.hidePopup(markerId: "marker_id_1")

Display a pop-up once a marker on the map is selected

To do this, you must implement mapView(_:, onMarkerSelectID:) of the MapViewDelegate
delegate.
extension MyController: MapViewDelegate {

func mapView(_ mapView: MapView, onMarkerSelectID: String) {
mapView.displayPopup(markerId: id, content: "Hello world")

}
}

Styles

The map supports changing styles. .automatic style means that the map will automatically
change light and dark styles based on the system interface theme.
mapView.changeStyle(.automatic)
mapView.changeStyle(.dark)

GeoJSON

The map supports drawing polygons and lines from a GeoJSON source.

Add sources and layers only once the map has been uploaded, which can be tracked in
mapViewDidLoad(_:) delegate

let sourceData = Data(...)

let source = MapDataSource(id: "sourceID", type:
.geoJSON(sourceData))
mapView.addSource(source)

let fillLayer = MapLayer(
id: "fillLayer",
sourceID: "sourceID",
paint: FillPaintProperties(fillColor: .iuColor(.green),

fillOpacity: .value(0.3))
)

let strokeLayer = MapLayer(

886

id: "strokeLayer",
sourceID: "sourceID",
paint: LinePaintProperties()

)

mapView.addLayer(fillLayer)
mapView.addLayer(strokeLayer)

You can delete sources and layers by specifying their IDs.
mapView.removeLayer("fillLayer")
mapView.removeLayer("strokeLayer")
mapView.removeSource("sourceID")

Route creation as an encoded string from the route creation service is supported.

let routeSource = MapDataSource(id: "routeSourceID", type:
.encodedString(encodedRoute))
mapView.addSource(routeSource)

let routeLayer = MapLayer(
id: "routeLineLayer",
sourceID: "routeSourceID",
paint: LinePaintProperties(lineColor: .iuColor(.red),

lineWidth: 2)
)

mapView.addLayer(routeLayer)

Circles are supported. Since GeoJSON does not support circles, they are simulated as a
polygon with a given number of sides.

mapView.addCircleSource(center: coords, radius: 500, steps: 32,
id: sourceID)

If sources and layers are known in advance, then you can add them with a single call.

887

mapView.addSourcesAndLayers(
sources: [

source,
routeSource

],
layers: [

fillLayer,
strokeLayer,
routeLayer

]
)

Clustering

Markers can be combined into clusters. Clustering creates a new data source on the map, so it
should only be used after the map is uploaded. You can specify clusters radius in meters, as
well as text and background color.
func mapViewDidLoad(_ mapView: MapView) {

let markers: [Marker] = ...
mapView.addCluster(markers, id: "clusterId", radius: 50,

textColor: .white, backgroundColor: .blue)
}

Clusters are deleted by specifying the cluster ID.

mapView.removeCluster(id: "clusterId")

Traffic jams and isolines

The map can show traffic jams, metro lines and elevation levels (contours). To enable it, use the
setLayoutVisible method.

mapView.setLayoutVisible(true, layout: .traffic)
mapView.setLayoutVisible(true, layout: .isolines)
mapView.setLayoutVisible(true, layout: .isolinesLabel)
mapView.setLayoutVisible(true, layout: .subway)

Error handling

Use the mapView(_:, didFailWithError:) method of MapViewDelegate delegate to handle errors.

extension MyController: MapViewDelegate {

888

func mapView(_ mapView: MapView, didFailWithError error: Error) {
print("Did fail with error: \(error.localizedDescription)")

}
}

Geocoding

Geocoder — Maps SDK component for direct and reverse geocoding. An API key is required for
initialization.

let geocoder = Geocoder(apiKey: "your apiKey")

geocoder.geocode(
query: "Leningradsky Prospekt 39с79",
lang: "ru",
location: Coordinates(lng: 37.537892, lat: 55.796926)

) { result in
switch result {
case let .success(response):

print(response)
case let .failure(error):

print(error.localizedDescription)
}

}

889

SwiftUI

Apply a Map component to use the map in SwiftUI.

import SwiftUI
import MapsSDK

class StateObject: ObservableObject {
let mapConfig = MapViewConfig(

apiKey: apiKey,
center: Coordinates(lng: 37.537892, lat: 55.796926)
zoomLevel: 15,
style: .automatic

)

let mapView = MapView()
}

extension StateObject: MapViewDelegate {
// delegate methods

}

struct ContentView: View {
@StateObject private var state = StateObject()

var body: some View {
Map(

config: state.mapConfig,
view: state.mapView,
delegate: state

)
}

Restrictions
MapsSDK can be integrated into apps that support iOS 12.4 and later versions.

Starting with iPadOS 13, users can use multi-window mode. MapsSDK has not been optimized
for this mode.

You can easily integrate MapsSDK into applications based on the UIKit or SwiftUI frameworks.

890

891

Additional services

Please refer to the table below to learn more about additional services that are essential when
some supplementary details are required.

Services

Call point Description

/elevation Determines point or profile elevation along the route

/ip2geo Determines location by IP address

/timezone Determines the time zone at any point, as well as the offset of time relative to
UTC.

/postcode
Determines postal code by address or addresses via postal code. For Russia
only: you can search for a post office by postal code

892

https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/Additional_services/Height_determination
https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/Additional_services/Location_determination_by_IP
https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/Additional_services/Determining_the_time_zone
https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/Additional_services/Search_for_a_zip_code

Elevation assessment
/elevation — call point of a service that allows gathering elevation data. The service allows you
to request elevation for:

● separate point on the map;
● set of unrelated points;
● route — a sequence of interconnected points (for this, the resample_distance field in

json is used).

Request

API requests are made with HTTP POST.

Required POST-request parameters

Field
name

Format Description Example

api_key hex-string See “Access to services”
api_key=fa749bace6d8a3b1....

json string POST request body with the
parameters necessary to get the
elevation data.

JSON

JSON is passed in a request body.

893

Required fields

Field Format Description Json example Service response
example

locations Coordinates can be passed to
this field in one of 3 valid formats:

● Coordinates list:

[{"lat": 56.1, "lon":
43.2}, {"lat": 56.2,
"lon": 43.3}]

● Encoded string: points
specially encoded into a
string (see also: Polyline
route decoding). For
example, a polyline in this
format is returned by the
route planner (response
field "shape").

"s{cplAfiz{pCa]xBxBx`AhC|
gApBrz@{[h..."

● String: one or more
coordinates separated by
|. Coordinates are used as
lat,lon, where:

○ lat - latitude (up to
6 decimal places);

○ lon - longitude (up
to 6 decimal
places)

152.2, 34.8|158.8,
23.0|120.0, 10.0

One or more
coordinates in
any of three valid
formats.
For the given
locations field,
the service
returns a set of
elevations in
meters. The
number of
elevations is
equal to the
number of points
in locations.

{

"locations":[
{

"lat":55.6018
97,

"lon":37.5813
05

},
{

"lat":55.8850
40,

"lon":37.6808
69

}
]

}

{

"locations":[
{

"lat":55.60189
7,

"lon":37.58130
5

},
{

"lat":55.88504
0,

"lon":37.68086
9

}
],
"height":[

201,
139

]
}

Optional fields

Field Format Description Json example Service response example

894

range Boolean Flag: when set
to true,
instead of a
one-dimensio
nal "height"
array, the
service
returns a
two-dimension
al
"range_height"
array, which
contains pairs
of values. The
first is
distance in
meters from
the previous
locations, the
second is
height.
The flag is
useful to
create a
profile of
heights, as
well as to
calculate the
tilt for ascents
and descents.
Default value:
false.

{
"range":true,
"locations":[

{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

]
}

{
"locations":[

{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

],
"range_height":[

[
0,
201

],
[

32131,
139

]
]

}

895

resample
_distance

Integer Value in
meters to
indicate the
distance
between the
height points.
The original
route from
successive
points is
divided into
segments
such as
resample_dist
ance. This
service
returns the
points formed
in this way
and the height
values for
these points.
Use case
examples: it is
required to
build an
elevation
profile in a
user route
with heights at
a 50 m
distance from
each other.
Default value:
no field, the
service
returns one
height value
per specified
coordinate.

{

"resample_distance"
:10000,

"locations":[
{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

]
}

{
"locations":[

{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.690027,

"lon":37.612137
},
{

"lat":55.778150,

"lon":37.643109
},
{

"lat":55.866264,

"lon":37.674221
},
{

"lat":55.885040,

"lon":37.680869
}

],
"range_height":[

[
0,
201

],
[

10000,
143

],
[

20000,
161

],

896

[
30000,
151

],
[

32131,
139

]
]

}

height_pr
ecision

Integer Number of
decimal
places in the
height value.
Fractional
height values
may be
required, for
example, for
greater
accuracy and
smoothness in
the elevation
profile.
Possible
values: 0-2.
Default value:
0 (height is an
integer).

{

"height_precision":
2,

"locations":[
{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

]
}

{
"locations":[

{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

],
"height":[

200.94,
138.84

]
}

Response

If height cannot be determined for some point, null is returned instead of a value in
meters.

Field
name

Format Description Example

897

locations Response field
format matches
the format
selected for the
request

This field returns the coordinates
for which the height was
requested.

"list of coordinates" format:

"locations":[
{

"lat":55.601897,

"lon":37.581305
},
{

"lat":55.885040,

"lon":37.680869
}

]

"encoded string" format:

"s{cplAfiz{pCa]xBxBx`Ah
C|gApBrz@{[h..."

"string" format:

152.2, 34.8|158.8,
23.0|120.0, 10.0

height Height array This field will be present in the
response if "range":true is not
specified in the request.
If the "resample_distance" field
is not specified in the request,
the number of values in the
"height" array is the same as the
number of points passed in the
request.
If the "resample_distance" field
is specified, then the number of
heights corresponds to the
number of points on the
locations polyline, between
which the distance is equal to
"resample_distance"

"height":[221,172,206,1
88,153]

898

range_h
eight

An array of x
and y value
pairs:
x - total distance
in meters from
the route start.
For the first
coordinate it is
always 0 m
y - height in
meters for the
coordinate at the
given index

This field is present in the
response if "range":true is
specified in the request.
The number of pairs in the
"range_height" array is
determined by the same rules as
in the "height" array

"range_height":[[0,221]
,[248,172],[902,206],[1
1308,188],[1601,153]]

Examples

Request with a single coordinate

curl -X POST \
-H "Content-type: application/json" \
-H "Accept: application/json" \
-d '{"locations":"55.601897, 37.581305"}' \
"https://geo.rustore.ru/api/elevation?api_key=<YOUR_API_KEY>"

Response

{"locations":"55.601897, 37.581305","height":[201]}

Request with coordinates with no height data

curl -X POST \
-H "Content-type: application/json" \
-H "Accept: application/json" \
-d '{"locations":[{"lat":0.0,"lon":0.0}, {"lat":0.1,"lon":0.1}]}' \
"https://geo.rustore.ru/api/elevation?api_key=<YOUR_API_KEY>"

Response

{"locations":[{"lat":0.000000,"lon":0.000000},{"lat":0.100000,"lon":0.
100000}],"height":[null,null]}

899

IP Location Detection

/ip2geo — call point of the IP location service.

Request

Required request parameters

Field
name

Format Description Example

api_key hex-string See “Access to service”
fa749bace6d8a3b1....

Extra request parameters

Field
name

Format Description Example

q string Search request that contains IPv4 IP
address in decimals.
By default, if the requested IP address is
not specified in the request, the IP
address of the client will be automatically
determined and used.

192.168.1.1

lang 2-character
language
code

Response language in one of the
available languages.
The object area language is used by
default.

lang=en

Response

Field
name

Format Description Example

geoid object Internal Geo ID
"geo_id": "546"

address string Object address
"address": "Russia
Moscow"

900

bbox list Object location boundaries for map
positioning "bbox": [

37.326228,
55.491308,
37.967428,
55.957772

]

isocode 2char 2-character country code according to
ISO 3166-1 alpha-2 "isocode": "RU"

type string Object type
"type": "locality"

ref hex Object ID can be used to get
additional information in the Geocoder
service

Object ID is not fixed and may
be changed over time

"ref":
"1000000C4D63818"

pin list Object positioning data (longitude and
latitude) "pin": [

37.538851,
55.796731

]

Example

Request

https://geo.rustore.ru/api/ip2geo?api_key=<YOUR_API_KEY>&q=46.138.195.
192

Response

{
"request": "/ip2geo?q=46.138.195.192&api_key",
"results": [
{

901

https://help.rustore.ru/rustore/for_developers/developer-documentation/rustore_geo/Search_and_geocoding_services/Geocoding_Service

"address": "Russia Moscow",
"bbox": [
37.326228,
55.491308,
37.967428,
55.957772

],
"geo_id": 5506,
"isocode": "RU",
"pin": [
37.617494,
55.750446

],
"ref": "030000000026FCFD",
"type": "city"

}
]

}

902

Time zone detection

/timezone — service call point to determine the time zone anywhere in the world, as well as the
time offset relative to UTC.

Request

Required parameters

Field
name

Format Description Example

api_key hex-string See “Access to service”
fa749bace6d8a3b1....

q string Search request body.
For reverse geocoding —
coordinates in lat, lon
format, where:

● lat — latitude of
the desired point
in degrees (6
decimal places
are used);

● lon — longitude
of the desired
point in degrees
(6 decimal places
are used)

q=55.479205,37.32733

Additional parameters

Field
name

Format Description Example

timesta
mp

unix
timestam
p

Timestamp in UTC zone for which timezone
parameters will be calculated.
If not specified, the current time will be used.

timestamp=12647
53640

Response

Field
name

Form
at

Description Example

tzid string Time zone ID defined by CLDR
"tzid":
"Europe/Moscow"

903

http://cldr.unicode.org/

tzname_s
hort

string Time zone short name
"tzname_short":
"MSK"

utc_delta int Time zone offset of the requested location
from UTC (in seconds) "utc_delta":

10800

Example

Request

https://geo.rustore.ru/api/timezone?api_key=<YOUR_API_KEY>&q=55.479205
,37.32733

Response

{
"request": "/v1/timezone?api_key&q=55.479205,37.32733",
"results": [{

"tzid": "Europe/Moscow",
"utc_delta": 10800

}]
}

904

Postal code search

/postcode — helps to find:
● addresses which use the requested postal code;
● postal code to the address;
● for Russia, you can also request information about a post office

Request
Required parameters

Field
name

Format Description Example

api_key hex-string See “Access to services”
api_key=fa749bace6d8a3b1
....

q string Search request containing postal
code, ref addresses, or address
for which the postal code should
be found

q=125167
q=020000003792BE0E
q=Moscow, Naryshkina
str, 5b1

Additional parameters

Field
name

Format Description Example

905

fields fieldname1,fieldnam
e2,....fieldnameN

Select fields to
display in the
response. Possible
values:

● postoffice —
detailed
information
about the
Russian Post
office;

● postcode
(default) —
found/searche
d postal code;

● addresses
(default) —
addresses
which use the
found postal
code.

fields=postoffice,post
code,addresses

address
es

string Response format for
the addresses field:

● short
(default) —
short
hierarchical
representatio
n of
addresses
used by the
found postal
code.

addresses=full

isocode char2 2-character country
code according to
ISO 3166-1 alpha-2

Only RU is
currently
supported

isocode=ru

Response

Field name Format Description Example

request string Request
"request": "125167"

906

results list Results
"results": [

{
"addresses": {

"country": "Russia",
"localities": [

{
"name": "Moscow",
"streets": [

{

"buildings": [
"22

b1"
],
"name":

"Starokachalovskaya street"
}

]
}

],
"region": "Moscow",
"subregion":

"Southwestern Administrative
District"

},
"postcode": "117216"

}
]

postcode string Postal code
"postcode": 125167

907

addresses dict Addresses
which use the
found postal
code

addresses=short:

"addresses": {
"country": "Russia",
"localities": [

{
"name": "Moscow",
"streets": [

{
"buildings": ["8

K1", "1D", "1B", "1А", "1 K1"],
"name":

"Starokachalovskaya street"
},
{

"buildings":
["4G", "6", "6 b2", "2 b1", "2А"],

"name":
"Koktebelskaya street"

},
{

"buildings":
["16", "18", "20 b1", "10 b1", "1G",
"9 b2"],

"name":
"Kulikovskaya street"

}
]

}
],
"region": "Moscow",
"subregion": "Southwestern

Administrative District"
}

908

postoffice dict
"postoffice": {

"address": "Russia, Moscow,
South-Western Administrative
District, Moscow, Severnoye Butovo
district, microdistrict 3, Grina
street, 5B",

"address_details": {
"building": "5B",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"postal_code": "117216",
"region": "Moscow",
"street": "Grina str",
"sublocality": "microdistrict

3",
"subregion": "Southwestern

Administrative District",
"suburb": "Northern Butovo"

},
"pin": [

37.570932,
55.566898

],
"ref": "22000000023FE098"

}

Post office fields description

Field name Format Description Example

address string Full address
"address": "Russia, Moscow,
Northern Administrative
District, Moscow, Khoroshevsky,
Leningradsky Prospekt, 56"

909

address_d
etails

list Detailed information
about the found
address

"address_details": {
"building": "56",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"postal_code": "125167",
"region": "Moscow",
"street": "Leningradsky

Prospekt",
"subregion": "Northern

Administrative District",
"suburb": "Khoroshevsky"

}

opening_h
ours

list Post office hours
"opening_hours": {

"Mo":
[09:00-13:00,14:00-21:00],

"Tu":
[09:00-13:00,14:00-21:00],

"We":
[09:00-13:00,14:00-21:00],

"Th":
[09:00-13:00,14:00-21:00],

"Fr":
[09:00-13:00,14:00-21:00],

"Sa": [10:00-18:00],
"Su": []

}

ref hex Post Office ID

Object ID is
not stable
and may
change

"ref": "1000000C4D63818"

pin list Post office
coordinates
(longitude and
latitude)

"pin": [
37.538851,
55.796731

910

]

Examples
Request

https://geo.rustore.ru/api/postcode?api_key=<YOUR_API_KEY>&q=125167&fi
elds=*

Response

{
"request": "/postcode?q=125167&fields=*",
"results": [
{
"addresses": {
"country": "Russia",
"localities": [
{
"name": "Moscow",
"streets": [
{
"buildings": [
"56/2",
"37B",
"39 b3",
"39 b9",
"39",
"39",
"37",
"37 b8",
"39",
"37 b12",
"39 b17",
"36 b37",
"36 b30",
"36 b38"

],
"name": "Leningradsky Prospekt"

},

911

{
"buildings": [
"7А",
"5",
"3",
"4 с4",
"4А",
"4",
"4",
"4 b12",
"4 b11",
"4 b7",
"2 b1",
"4 b6",
"4 b8"

],
"name": "Novy Zykovsky proezd"

},
{
"buildings": [
"1",
"5 ",
"5 b1",
"10",
"3",
"5 b3"

],
"name": "Seregina str"

},
{
"buildings": [
"39 b12"

],
"name": "Khodynsky Boulevard"

},
{
"buildings": [
"11",
"11А",
"11B",
"3",

912

"10",
"11А b1",
"6",
"8 b3",
"8",
"8 b14",
"8 b11",
"1А"

],
"name": "Airport passage"

},
{
"buildings": [
"5 b2",
"5 b1"

],
"name": "Naryshkinskaya alley"

},
{
"buildings": [
"4",
"5 b3",
"5 b2",
"5 b1",
"8 b2",
"8 b1",
"7",
"6",
"3",
"3Б"

],
"name": "Konstantin Simonov street"

},
{
"buildings": [
"4",
"6",
"4А",
"8",
"5 b25",
"5 b22",

913

"5 b8",
"5 b7",
"5 b2",
"5 b9",
"5 b11",
"5 b25",
"5 b26",
"5 b35",
"5 b27А",
"5 b19",
"5 b20"

],
"name": "Aviation Lane"

},
{
"buildings": [
"4",
"5",
"3"

],
"name": "Eldoradovsky Lane"

},
{
"buildings": [
"2А",
"2А b2",
"3/5",
"1А",
"2 b1",
"2 b2",
"2 b3",
"2 b5"

],
"name": "Krasnoarmeyskaya street"

},
{
"buildings": [
"3"

],
"name": "Stepan Suprun street"

},

914

{
"buildings": [
"3",
"4",
"6 b2",
"6 b1",
"5"

],
"name": "Old Zykovsky Proezd"

},
{
"buildings": [
"3",
"3 b2"

],
"name": "1st Street March 8"

},
{
"buildings": [
"3"

],
"name": "Trudovaya alley"

},
{
"buildings": [
"7",
"5",
"9",
"9А",
"11"

],
"name": "Pilot Nesterov street"

}
]

}
],
"region": "Moscow",
"subregion": "Northern Administrative District"

},
"postcode": "125167",
"postoffice": {

915

"address": "Russia, Moscow, Northern Administrative District,
Moscow, Airport district, Leningradsky Prospekt, 56",

"address_details": {
"building": "56",
"country": "Russia",
"isocode": "RU",
"locality": "Moscow",
"region": "Moscow",
"street": "Leningradsky Prospekt",
"subregion": "Northern Administrative District",
"suburb": "Airport area"

},
"pin": [
37.537903,
55.798518

],
"ref": "2100000045438C4B"

}
}

]
}

916

RuStore Deeplinks

Using deeplinks, you can open some RuStore screens while within your app.

For example, you can open a screen with a list of all user’s subscriptions using the code below:

try {
startActivity(Intent(Intent.ACTION_VIEW,

Uri.parse("rustore://profile/subscriptions")))
} catch (ex: ActivityNotFoundException) {

// Handle error when RuStore is not installed
}

where "rustore://profile/subscriptions" is a RuStore deeplink. To open the required RuStore app
screen, you can replace it with any of the deeplinks listed below.

List of deeplinks

Function Deeplinks

App Screen ● rustore://apps.rustore.ru/app/{packageName} — opens the
RuStore app;

● market://details?id={packageName} — suggests to open
RuStore or other app stores.

where {packageName} — app package name.

Subscriptions
Screen

rustore://profile/subscriptions

Account/Updates
Screen

rustore://apps.rustore.ru/updates

Login Screen rustore://auth

917

Task API

Task — asynchronous task that returns an error or value in the corresponding callback
(onFailure, onSuccess).

Below is an implementation example which applies the SDK payment method getProducts().

Task processing example

Async methods return Task<t>. For example, RuStoreBillingClient.getProducts() returns
Task<proDuctsRasponse>. Thus, Task will return ProductsResponse if the method appears to
be successful:

val task: Task<ProductsResponse> =
RuStoreBillingClient.products.getProducts()

Add callback OnSuccessListener to Task in order to get the successful method result:

val task: Task<ProductsResponse> =
RuStoreBillingClient.products.getProducts()
task.addOnSuccessListener {

// Process success
}

To get an execution error, add callback OnFailureListener to Task:

val task: Task<ProductsResponse> =
RuStoreBillingClient.products.getProducts()
task.addOnFailureListener {

// Process error
}

Add oncompleTelistener to Task if you need to get both a successful result and error:

val task: Task<ProductsResponse> =
RuStoreBillingClient.products.getProducts()
task.addOnCompleteListener(object :
OnCompleteListener<ProductsResponse> {

override fun onFailure(throwable: Throwable) {
// Process Error

}

918

override fun onSuccess(result: ProductsResponse) {
// Process success

}
})

Multithreading

Callback added to Task are performed on the main app thread. To run callback in other threads,
transfer your Executor to the Callback method.

Adding executor via corpusins:

val task: Task<ProductsResponse> =
RuStoreBillingClient.products.getProducts()
task.addOnCompleteListener(Dispatchers.IO.asExecutor(), object :
OnCompleteListener<ProductsResponse> {

override fun onFailure(throwable: Throwable) {
// Process Error

}

override fun onSuccess(result: ProductsResponse) {
// Process success

}
})

Synchronous execution

You can use task.await() if your code is already executed in the working thread and you need to
get the result synchronously:

try {
val task: Task<ProductsResponse> =

RuStoreBillingClient.products.getProducts()
task.await()

} catch (e: CancellationException) {
// Process error

}

Please note that when calling await(), the main (UI) thread returns IllegalStateException error.

919

Task API processing with Corutins

You can use the following code for Task processing with Corutine:

suspend fun <T> Task<T>.wrapInCoroutine(): Result<T> {
return suspendCancellableCoroutine { continuation ->

addOnCompleteListener(object : OnCompleteListener<T> {

override fun onSuccess(result: T) {
if (continuation.isActive) {

continuation.resume(Result.success(result))
}

}

override fun onFailure(throwable: Throwable) {
if (continuation.isActive) {

continuation.resume(Result.failure(throwable))
}

}
})

continuation.invokeOnCancellation {
cancel()

}
}

}

920

Getting started with RuStore APIs

The API host is public-api.rustore.ru

List of available RuStore API methods

Name Method Description

Retrieving payment and subscription data using API (common methods)

Retrieve payment data
using a purchase token

GET
https://public-api.rustore.ru/
public/purchase/{purchaseT
oken}

This method allows
retrieving payment info for a
purchase token.

Retrieve subscription data
via a subscription token

GET
https://public-api.rustore.ru/
public/subscription/{subscri
ptionToken}

This method allows
retrieving subscription info
using a subscription token.

Retrieve subscription
status by a subscription
token

GET
https://public-api.rustore.ru/
public/subscription/{subscri
ptionToken}/state

This method allows
retrieving subscription
status using a subscription
token.

Retrieving payment and subscription data using API (application methods)

Retrieve subscription data
via a subscription token
(V2)

GET
https://public-api.rustore.ru/
public/glike/subscription/{pa
ckageName}/{subscriptionId
}/{subscriptionToken}

This method allows
retrieving subscription info
using a subscription token.

921

https://public-api.rustore.ru/
https://public-api.rustore.ru/
https://public-api.rustore.ru/

Confirm subscription via a
subscription token

POST
https://public-api.rustore.ru/
public/glike/subscription/{pa
ckageName}/{subscriptionId
}/{purchaseToken}:acknowle
dge

The method allows
confirming subscription
using a subscription token.

Uploading and publishing applications using the RuStore API

Creating a draft release POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version

This method allows creating
a draft app version with
basic information.

Uploading an APK file POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}/apk

This method allows
uploading an .apk file for
publication.

Uploading an app icon POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}/image/icon

This method allows
uploading an application
icon.

Uploading screenshots POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}/image/screenshot/{orientat
ion}/{ordinal}

This method allows
uploading app screenshots.

Changing publication
settings

POST
https://public-api.rustore.ru/
public/v1/application/{packa

This method allows
changing the publication
type, deferred publication

922

geName}/version/{versionId
}/publish-settings

date and % for partial
release.

Getting app version status GET
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version?ids=7040
95&page=0&size=2

This method allows
retrieving basic app info, as
well as checking the version
status.

Submitting a draft app
release for review

POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}/commit?priorityUpdate={pr
iorityUpdate}

This method allows
submitting a draft app
version for review

Manual publication
POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}/publish

The method allows
publishing a manually
moderated version.

Deleting a draft release DELETE
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/version/{versionId
}

This method allows deleting
previously created drafts.

Feedback management using the RuStore API

Getting app feedback GET
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/comment?id={id}
&page={number}&size={siz
e}

This method allows
retrieving a list of all the
latest reviews for your app
or either a single review.

923

Receiving feedback in .csv GET
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/comment/export?f
rom={date_from}&to={date_
to}

This method allows
retrieving all reviews in .csv
for a certain period of time.

Leaving a reply to review POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/feedback?comme
ntId={commentId}

This method allows replying
to a review.

Getting review response
status

GET
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/feedback/{feedba
ckId}

This method allows
retrieving moderation status
of a response to a review.

Getting the status of
responses to reviews

GET
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/feedback/?id={id}
&page={number}&size={siz
e}

This method allows
retrieving moderation status
of a review response or
obtaining a single response
info.

Editing review response POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/feedback/{feedba
ckId}

This method allows editing
a review response body.

Deleting review response DELETE
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/feedback/{feedba
ckId}

This method allows deleting
a response to a review.

924

Getting app rating POST
https://public-api.rustore.ru/
public/v1/application/{packa
geName}/comment/statistic

This method allows
obtaining an app rating.

How to sign up and start using API RuStore

Please log in to gain access to the RuStore API. To do this, generate a key pair - public-private
key - in RuStore Console and receive a JWE token.

Create API Keys

To generate keys, you must use the RSA encoding algorithms.

The keys will be generated using the RSA encoding algorithms.
1. Open the RuStore Console.
2. Go to the "Company" tab in the upper part of the screen (be sure to log in to legal entity

account).
3. On the left, select "API RuStore".
4. Click "Generate a key".

5. Enter the key name (up to 255 characters).

925

https://console.rustore.ru/sign-in

6. Select the applications to which the private key will be distributed.

Note. You can select one or more apps, or all at once. If you check the box next to “All
apps” and then create a new app when generating a key, the key will not apply to it.

7. Select one or more RuStore API methods. You can choose both application methods the
private key will have access to, and general ones. General methods will transfer data
from all applications, regardless of which app the key is configured for.

926

The public key is generated automatically and stored in the database. To sign in, you
only need to know the value of the generated private key.

8. Click "Generate a key".

927

9. Once the private key appears in the “Private Key” pop-up window, copy and save it
properly.

The public key is generated automatically when it is generated and is recorded in the
database regardless of the user. To sign in, you only need the value of the generated
private key.

Key pair generation is available to company owners only.

If there is a key pair, the created private key will appear in RuStore Console in a table. It
indicates the key name and ID, the selected methods and applications, and the key
creation or update date.

928

Update a key

1. Open the RuStore Console.
2. Go to the "Company" or "Developer" tab in the upper part of the screen.
3. In the names section, find the required key.
4. Click on the action bar.
5. Then select “Update”.
6. The public key will be automatically renewed.

Remove API keys

You can remove a public and private key on the RuStore Console.

1. Open the RuStore Console.
2. Go to the "Company" or "Developer" tab in the upper part of the screen.
3. In the names section, find the required key.
4. Click on the action bar.
5. Click "Remove" in the key section.

Receive a token
Use the generated private key to obtain the JWE token via the POST /public/auth/ method.

The jwe token is valid for 900 seconds, then it must be obtained again by repeating the POST
/public/auth/ method.

When signed in
The resulting JWE token allows you to use the capabilities of the RuStore API. To do this, its
value must be transferred to the “Authorization” section using the API key.

929

https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in
https://console.rustore.ru/sign-in

Generating an authorization token

This method allows you to generate a JWE token using a private key obtained on the
RuStore Console. The method also checks the app owner’s activities.

A private key is required to successfully complete the request.

Interaction parameters

POST /public/auth/

Attribute Type Requir
ed

Location Description Example
content

companyId string Yes body Company id 123

keyId string Yes, if
comp
anyId
is not
specif
ied

body key ID 123

timestamp string Yes body Response time delay should not
exceed 60 seconds compared to the
current server time.

2022-07-0
8T13:24:4
1.832871
1+03:00

signature string Yes body RSA-signature SHA-512 hash in a
line that contains companyId and
timestamp of a response.
Signature layout and verification
algorithm: SHA512withRSA

Example:
companyId: 123
timestamp:
2022-07-08T13:24:41.8328711+03
:00
string for hash:
1232022-07-08T13:24:41.8328711
+03:00
SHA-512 hash:
0976c61cce96fccd9daaae5f594db
43dd287c0e266561669184276a2e
86578c0e2a39cd0b183a458d0e47
b17c68548daac83db97bc710dcd0
7d01bae40033235

930

If you have problems understanding the signature parameter algorithm, use a companyId jar file
or a keyId jar file to generate this parameter.
You need to pass the company id and the resulting private key. In response, you will receive a
body for the POST request /public/auth/ with companyId, timestamp and signature parameters.

The generated signature parameter is valid for 1 minute, since it directly depends on the
timestamp.

931

https://gitflic.ru/project/rustore/rustore-token-generator/blob?file=ruStoreTokenGenerator.jar&branch=main
https://drive.google.com/drive/folders/1NDOIkkyaT2QLPceJyaLmAFd39gr9qu16

Response example

Successful

Attribute Type Required Description Example content

code string Yes Response code error/OK

message string Yes Response code definition Range timestamp not valid

body{} object Yes Body

timestamp timestamptz Yes Time 2022-07-08T13:24:41.832
8711+03:00

body{}

Attribute Type Required Description Example content

jwe string Yes Security token to API
RuStore (payload is
below), re-usable.

eyJjdHkiOiJK…sv16aBl8
tTg.VkWuTw

ttl int Yes Token validity period, sec

By default, the token
validity periods are set to
900 seconds

900

Possible errors

code message Description Possible solution

400 Range timestamp not
valid

The timestamp
parameter differs by
more than 60 seconds

Update timestamp and
signature

404 Company key not
found

The private key was not
found for the
transmitted companyId

Check whether a private key
has been created for this
companyId and whether it is
up to date

932

400 Company key disabled The private key for the
transferred companyId
has been deleted

Check whether a private key
has been created for this
companyId and whether it is
up to date

400 Signature encode error The signature
parameter was
generated incorrectly

Regenerate the signature
parameter

404 You cannot use this
action because the
company is not found

The company that
corresponds to the
passed companyId is
missing or inactive

Check the companyId
parameter to ensure it is up
to date

400 You can't use this
action because the
company is banned

The company with the
transferred company Id
is blocked

Check the companyId
parameter to ensure it is up
to date

Request example

curl --location 'https://public-api.rustore.ru/public/auth' \
--header 'Content-Type: application/json' \
--data '{
"companyId":"1275328",
"timestamp":"2023-08-11T13:31:17.580+03:00",
"signature":"U4kh.......nFkbuw=="

}

Successful response

{
"code": "OK",
"message": null,
"body": {

"jwe": "eyJlbmMiOiJBM......nuuM227D_O1A",
"ttl": 900

},
"timestamp": "2023-08-11T13:31:33.171847393+03:00"

}

933

Unset

Unset

How to retrieve payment data using a purchase token

This method enables you to retrieve payments using a purchase token.
Interaction examples
For real payments:
GET

https://public-api.rustore.ru/public/purchase/{purchaseToken}

For test payments:
GET

https://public-api.rustore.ru/public/sandbox/purchase/{purchaseToken}

If you want to work with Test Payments and Subscriptions, you'll need to create a new key, and
when you create the key, you'll need to specify the methods to test.

GET https://public-api.rustore.ru/public/purchase/{purchaseToken}

Attribute Type Required Description Location Example content

Public-Token string Security token to
Public API Rustore

Yes header

subscription_
token

string How to get a
purchase token

Yes path 111.123

Response parameters

Attribute Type Description Required Location Example content

code number Response code Yes body ОК,
ERROR,
BAD_REQUEST,
NOT_FOUND

934

https://public-api.rustore.ru/

message date Response code
definition

No body

timestamp string Response time Yes body

body{} object Response body No body

body{}
Attribute Type Description

Example

error {} object Error definition

invoice_id string Account number 12345

invoice_date string Account creation
date

2020-04-29T08:18:0
3+03

935

invoice_status string Account status

created - account
successfully
created;
executed - user has
selected a payment
method, the
payment is
executed;
cancelled - canceled
by the user;
paid - funds are
reserved, the
account is awaiting
confirmation (for
consumable
products only);
confirmed —
payment was
successful;
reversed, refunded
— funds from the
account have been
returned to the
buyer.

invoice {} object Account info

image string Link to picture
https://i-love-png.co
m/images/grim-reap
er-icon.png

application_code string Application code com.MashaAndThe
Bear.HairSalon

application_name string App name Masha and the Bear
Hair Salon

owner_code string App owner code com.MashaAndThe
Bear

owner_name string App owner name Masha and the Bear

936

https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png

payment_info {} object Payment info

payment_methods{} object Payment tools

body.error {}
Attribute Type Description

Example

user_message string Error text

error_description object Error description

error_code number Numeric error code 0

body.invoice {}
Attribute Type Description

Example

purchaser{} object Buyer information

delivery_info{
}

object Delivery information

invoice_params[] array Additional order parameters

order{} object Order info

body.invoice.purchaser {}
Attribute Type Description

Example

email string Buyer's email qq@dd.eof

phone string Phone number 9123456789

contact string Preferred
communication type email

body.invoice.delivery_info {}

937

Attribute Type Description Example

address{} object Address

delivery_type string Delivery method courier

description string Additional Information Call back in 1.5 hours

body.invoice.delivery_info.address {}
Attribute Type Description

Example

country string Country ID RU

city string City Moscow

address string Address st. Vavilova, 19,
office 1

body.invoice.invoice_params []
Attribute Type Description

Example

key string Parameter name packageName

value string PArameter value com.MashaAndThe
Bear.HairSalon

body.invoice.order {}
Attribute Type Description

Example

order_id string Unique order ID
d290f1ee-6c54-4b0
1-90e6-d701748f08
51

order_number string Order number 145

order_date string Order date 2020-04-29T08:17:0
3+03

service_id string Service ID 223

938

amount number
Order amount in
minimum currency
units (kopecks)

11836

currency string Currency code RUB

purpose string Brief purpose of
payment

Purchase in the
game “Masha and
the Bear Hair Salon”

description string Order Description

In-game item
purchase in “Masha
and the Bear Hair
Salon”

language string Language ru-RU

expiration_date string Account expiration
date and time

2022-10-11T14:05:4
4.741Z

tax_system number Tax system 0

trade_name string Company trade
name Romashka

visual_name string Company name
Purchasing/renewin
g a subscription

org_name string Company name LLC Romashka

org_inn string Company TIN 1234567890

visual_amount string Amount 1 500,45 rubles

order_bundle [] array Order list

body.invoice.order.order_bundle []
Attribute Type Description

Example

939

position_id number Unique item ID 1

name string Item name and
description Crystals

item_params[] array Additional order
parameters

quantity{} object
Description of the
total number of
product items

item_amount number

Total cost of all
items in minimum
currency units (in
kopecks)

11836

currency string Currency code RUB

item_code string Item number (ID)
com.MashaAndThe
Bear.HairSalon.cryst
al100

item_price number

Cost of one product
item in minimum
currency units
(kopecks)

11836

discount_type string Discount type percent

discount_value float Discount value 5.25

interest_type string Agency fee type agentPercent

interest_value float Agency fee value 15.105

tax_type number VAT rate 6

940

tax_sum number
Tax amount in
minimum currency
units (kopecks)

2367

image string Link to picture
https://i-love-png.co
m/images/grim-reap
er-icon.png

body.invoice.order.order_bundle.item_params []
Attribute Type Description

Example

key string Parameter name packageName

value string Parameter value com.MashaAndThe
Bear.HairSalon

body.invoice.order.order_bundle.quantity {}
Attribute Type Description

Example

value float Value 1.05

measure string Unit kg

body.payment_info {}
Attribute Type Description Example

payment_date number Payment date and
time

2022-10-11T14:05:4
4.741Z

payment_id string Unique payment ID
d290f1ee-6c54-4b0
1-90e6-d701748f08
51

payment_params{} object
Additional payment
options

device_info{} object Device Information

941

https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png

loyalty_info{} object Loyalty program
information

card_id string Unique bank card ID
ad454ffg-6c54-4b01
-90e6-d701748f085
1

name string Cardholder name Main

paysys_code string RBS-shortname

masked_pan string Masked card
number **1111

expiry_date string Card expiration date 201912

cardholder string Cardholder name Ivan Petrov

payment_system string Payment system Visa

payment_system_i
mage string Link to payment

system logo

https://smartmarkett
estift.online.sberban
k.ru/icons/logo_visa.
png

image string Link to card logo

https://smartmarkett
estift.online.sberban
k.ru/icons/sberbank
_mastercard_league
_legends.jpeg

paysys string Name of payment
operator RBS

paysys_image string Link to payment
operator logo

https://www.sberban
k.ru/common/img/up
loaded/redirected/s_
m_business/acquirin
g/assets/images/intr
o@2x.png

payment_way string Payment Method SberPay

payment_way_code string Payment Method ID SberPay

942

https://smartmarkettestift.online.sberbank.ru/icons/logo_visa.png
https://smartmarkettestift.online.sberbank.ru/icons/logo_visa.png
https://smartmarkettestift.online.sberbank.ru/icons/logo_visa.png
https://smartmarkettestift.online.sberbank.ru/icons/logo_visa.png
https://smartmarkettestift.online.sberbank.ru/icons/sberbank_mastercard_league_legends.jpeg
https://smartmarkettestift.online.sberbank.ru/icons/sberbank_mastercard_league_legends.jpeg
https://smartmarkettestift.online.sberbank.ru/icons/sberbank_mastercard_league_legends.jpeg
https://smartmarkettestift.online.sberbank.ru/icons/sberbank_mastercard_league_legends.jpeg
https://smartmarkettestift.online.sberbank.ru/icons/sberbank_mastercard_league_legends.jpeg
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png
https://www.sberbank.ru/common/img/uploaded/redirected/s_m_business/acquiring/assets/images/intro@2x.png

payment_way_logo string Link to payment
method logo

https://cdn1.telegra
m.one/i/f7640dada7
8306b1c993e04001
b8738d/828b1eb30
921659e22e53a9ed
c92c4c4/24e01830d
213d75deb99c22b9
cd91ddd

bank_info{} object Bank information

body.payment_info.payment_params {}
Attribute Type Description Example

key string Parameter name googlePurchaseToken

value string Parameter value ameinkbophchljaejnocadib

body.payment_info.device_info {}
Attribute Type Description Example

device_platform_typ
e string Device platform iOS

device_platform_ver
sion string Platform OS version 13.6.1

device_model string Device model iPhone 7

device_manufacture
r string Manufacturer Apple

device_id string Device serial
number

83c3f257-46d8-41fe
-951b-f79d04e288c
2

surface string RuStore

surface_version string Software version 11.5.0

body.payment_info.loyalty_info {}
Attribute Type Description Example

943

https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd
https://cdn1.telegram.one/i/f7640dada78306b1c993e04001b8738d/828b1eb30921659e22e53a9edc92c4c4/24e01830d213d75deb99c22b9cd91ddd

service_code string Bonus program
code sbrf_spasibo

service_name string
Bonus program
name Sberbank Spasibo

change_rate number Exchange rate for
points to rubles 1

payment_bonus number
Amount of bonus
points used to pay
the bill, in kopecks

19800

award_bonus number

Amount of funds
used to earn points
when paying for an
order. Indicated in
minimum units
(kopecks)

21850

image string Link to picture
https://i-love-png.co
m/images/grim-reap
er-icon.png

body.payment_info.bank_info{}
Attribute Type Description Example

bank_name string Issuing bank name PJSC Sberbank

bank_country_code string Issuing bank
country code RU

bank_country_name string Bank country name Russia

bank_image string Link to bank logo
https://emoji.slack-e
dge.com/TKK9DHN
CV/sber/ad2df81a6c
d9812d.png

body.payment_methods {}

944

https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png
https://i-love-png.com/images/grim-reaper-icon.png
https://emoji.slack-edge.com/TKK9DHNCV/sber/ad2df81a6cd9812d.png
https://emoji.slack-edge.com/TKK9DHNCV/sber/ad2df81a6cd9812d.png
https://emoji.slack-edge.com/TKK9DHNCV/sber/ad2df81a6cd9812d.png
https://emoji.slack-edge.com/TKK9DHNCV/sber/ad2df81a6cd9812d.png

Attribute Type Description Example

user_message string Message to user
(optional)

To activate the
subscription, save
your bank card in
the mobile app

methods[] array Payment options

body.payment_methods.methods []
Attribute Type Description Example

method string Code QR

action string Name Pay via QR code

Response example:

945

{
"code": "OK",
"message": null,
"body": {

"invoice_id": "2850",
"invoice_date": "2023-07-18T14:31:33+03",
"invoice_status": "confirmed",
"application_code": "3399750",
"application_name": "Masha and the Bear",
"owner_code": "4384191",
"owner_name": " \"Narana\ LLC"",
"payment_info": {

"payment_date": "2023-07-18T14:31:42+03",
"payment_id": "1736",
"payment_params": null,
"loyalty_info": null,
"card_id": "193",
"paysys_code": "RBS-shortname",
"masked_pan": "XX1111",
"expiry_date": "202412",
"payment_system": "Visa",
"payment_system_image":

"https://smartmarket.online.sberbank.ru/image/visa.png",
"paysys_image": null,
"payment_way": "Paid with a saved card",
"payment_way_code": "CARD_BINDING",
"payment_way_logo":

"https://static.tildacdn.com/tild6236-3530-4235-b966-326630656238
/___14_-removebg-prev.png",

"bank_info": {
"bank_name": "Sberbank",
"bank_country_code": "SU",
"bank_country_name": null,
"bank_image": null

},
"device_info": null,
"name": null,
"cardholder": "CARDHOLDER NAME",
"image": null,
"paysys": "RBS"

},
"payment_methods": null,
"error": {

"user_message": "Account verified",
"error_description": "",

946

https://smartmarket.online.sberbank.ru/image/visa.png
https://static.tildacdn.com/tild6236-3530-4235-b966-326630656238/___14_-removebg-prev.png
https://static.tildacdn.com/tild6236-3530-4235-b966-326630656238/___14_-removebg-prev.png

"error_code": 0
},
"invoice": {

"delivery_info": {
"delivery_type": null,
"address": {

"country": null,
"city": null,
"address": null

},
"description": null

},
"invoice_params": [

{
"key":

"inapp_serviceparam_message_about_loyalty",
"value": "You can now pay for your

subscription with bonuses. Subscription renewal is available for
rubles only."

},
{

"key": "inapp_serviceparam_action_name",
"value": "Enable subscription"

},
{

"key": "inapp_serviceparam_features",
"value": "VERIFY"

},
{

"key": "period_type",
"value": "DAY"

},
{

"key": "period_duration",
"value": "1"

},
{

"key": "current_period",
"value": "STANDARD"

},
{

"key": "payment_type",
"value": "INITIAL"

}
],

947

"purchaser": {
"email": null,
"phone": null,
"contact": null

},
"order": {

"order_id":
"a090a93c-ca06-493d-a90a-ce2bac722358",

"order_number": "311",
"order_date": "2023-07-18T14:31:33+03",
"service_id": "4720",
"expiration_date": "2023-07-18T14:51:33+03",
"tax_system": null,
"trade_name": null,
"visual_name": "Purchasing/Renewing a

Subscription",
"org_name": "Super LLC",
"org_inn": "4419198349",
"visual_amount": "1 ₽",
"order_bundle": [

{
"position_id": 1,
"item_params": [

{
"key":

"_auto_itemAttributes_agent_info.type",
"value": "7"

},
{

"key":
"_auto_itemAttributes_supplier_info.name",

"value": "LLC \"Narana\""
},
{

"key":
"_auto_itemAttributes_supplier_info.inn",

"value": "4419198349"
}

],
"item_amount": 100,
"item_code": "1day",
"item_price": 100,
"discount_type": null,
"discount_value": null,
"interest_type": null,

948

"interest_value": null,
"tax_type": 6,
"tax_sum": null,
"name": "Payment for purchasing a

\"1day\" subscription. Provider: \"Purchase/Renewal of
Subscription\"",

"quantity": {
"value": 1,
"measure": "pc"

},
"currency": "RUB",
"image": ""

}
],
"amount": 100,
"currency": "RUB",
"purpose": "1day",
"description": "1day",
"language": "ru-RU"

}
},
"image": ""

},
"timestamp": "2023-08-02T10:11:04.655684723+03:00"

}

Response verification

The security token is generated by the security token method and then verified while getting the
response:

● Owner and/or app should not be blocked;
● Token should be valid;
● application_code invoice should contain the application code which corresponds to the

token owner.

949

How to retrieve subscription data via a subscription token

This method enables retrieval of subscription data from a payment service provider via a
subscription token.

Interaction parameters

GET
https://public-api.rustore.ru/public/glike/subscription/{packageName}/{subscrip
tionId}/{subscriptionToken}

Attribute Type Required Description Location Example content

Public-Token string Security token to
Public API Rustore

Yes header

subscription_
token

string How to get a
purchase token

Yes path 111.123

Response parameters

Attribute Type Description Required Location Example content

code number Response code Yes body ОК,
ERROR,
BAD_REQUEST,
NOT_FOUND

message date Response code
definition

No body

timestamp timesta
mptz

Response time Yes body

body{} object Response body No body

950

body{}

Attribute Type Description Required Location Example

code numb
er

Response
code

Yes body

success boole
an

Response
success
flag

Yes body true

message string
Response
code
description

No body Unknown
error

body{} object Response
body No body

body.body{}

Attribute Type Description Example

serviceName string Service name Okko

subscriptionId integer Unique subscription
ID 12345

addParameters string Additional
subscription options

Something about
subscription

productType string Product type SUBSCRIPTION

productName string Product name Okko optium

productCode string Product code monthly_sub

recurrent boolean Recurrency sign true

951

countOfDay integer Number of days 10

periodType string Period type
Available values:
DAY, MONTH,
YEAR

periodDuration integer Period duration 10

nextPaymentDate string Next payment date 2021-03-23

price integer
Price in minimum
currency unit
(kopecks)

9999

currency string Currency RUB

imageUrl string Link to product
picture

952

state string Subscription status

Active states

ACTIVATED —
subscription is
active.
Intermediate
statuses
ACCEPTED -
awaiting payment.
DEPOSITED —
payment has been
made, subscription
is awaiting
activation;
CLOSE_PENDING
— subscription in is
being terminated;
REPEATING -
subscription is at the
renewal stage,
attempted money
withdrawal.

Final states
DECLINED -
subscription is
closed, all attempts
at subsequent
subscription
payments have
failed, GRACE and
HOLD periods and
the number of
renewal attempts
have ended
CANCELED -
payment failed by
the user;
CLOSED —
subscription is
closed; the user has
disabled
subscription
auto-renewal, the
paid period has

953

expired, provider
has confirmed the
subscription closed;
REFUNDED —
refund initiated to
the user.

currentPeriod string Current period
name

Available values:

PROMO - free
period;
START — starting
period with a
reduced price;
STANDARD —
standard period;
GRACE - grace
period, the user has
not paid for the
subscription,
attempts to
withdraw continue,
access to the
content is
maintained;
HOLD — hold
period, the user has
not paid for the
subscription,
attempts to write off
continue, access to
the content must be
terminated.

debtPaymentPeriod string Name of payment
period

Null if the period is
standard

description string Subscription product
description Description

tariffId integer Unique rate ID 12345

954

periods [] array[object] Current period info Rate periods

body.body.periods []

Attribute Type Description Example

periodName string Current period
name

Available values:
PROMO, START,
STANDARD,
GRACE, HOLD

periodType string Period type
Available values:
DAY, MONTH,
YEAR

periodDuration number Period duration 10

periodPrice number
Price in minimum
currency unit
(kopecks)

10000

nextPeriod string Next period name

Available values:
PROMO, START,
STANDARD,
GRACE, HOLD

Response:

955

"code":"200",
"message":"something",
"timestamp":"2023-08-02T10:11:04.655684723+03:00",
"body":
{

"code": 40401,
"success": false,
"message": "unknown error",
"body": {

"serviceName": "Okko",
"subscriptionId": 100500,
"addParameters": "something",
"productType": "string",
"productName": "ОККО optium",
"productCode": "string",
"recurrent": true,
"countOfDay": 100,
"periodType": "DAY",
"periodDuration": 30,
"nextPaymentDate": "2021-03-23",
"price": 999,
"currency": "RUB",
"imageUrl":

"https://static-eu.insales.ru/images/products/1/7435/306650379/th
umb_1586524817849_15832463664565053990106868.jpg",

"state": "ACTIVATED",
"currentPeriod": "STANDARD",
"debtPaymentPeriod": "string",
"description": "DESCRIPTION",
"tariffId": 100500,
"periods": [
{
"periodName": "STANDARD",
"periodType": "DAY",
"periodDuration": 10,
"periodPrice": 10000,
"nextPeriod": "STANDARD"
}
]

}
}

956

https://static-eu.insales.ru/images/products/1/7435/306650379/thumb_1586524817849_15832463664565053990106868.jpg
https://static-eu.insales.ru/images/products/1/7435/306650379/thumb_1586524817849_15832463664565053990106868.jpg

Response verification

The security token is generated by the security token method and then verified while getting the
response:

● Owner and/or app should not be blocked;
● Token should be valid;
● The invoice in application_code response should contain the application code which

corresponds to the token owner.

957

How to retrieve subscription data by an invoice ID (V2)

This method enables to retrieve subscription data from the payment provider via the first
purchaseToken.

Interaction examples

GET /public/glike/subscription/{packageName}/{subscriptionId}/{purchaseToken}

Attribute Type Required Description Location Example content

Public-Token string Security token to
Public API
Rustore

Yes header

packageName string App package
name

Yes path

subscriptionId string Subscription /
product code

Yes path

purchaseToken string The token
consists of
invoiceId and
userId
parameters.

Token example
for invoiceId =
111 and userId =
123: 111.123

Yes path

Successful response parameters

Attribute Type Description Required Example
content

startTimeMillis string Subscription period,
ms

Yes 1577826955637

958

expiryTimeMillis string Subscription expiry, ms Yes 1609456386128

autoRenewing boolea
n

Subscriptions renewing
after expiry date

Yes false

priceCurrencyCode string ISO 4217 currency
code for subscription
price. For example, if
the price is indicated in
£, then
Pricecurrencycode will
be “GBP”.

Yes RUB

priceAmountMicros string Subscription price.
For tax-free countries
the price does not
include tax. Otherwise
the price includes tax.
The price is expressed
in micro -units, where
1,000,000 micro -units
is one unit of currency.
For example, if the
subscription price is
1.99 EUR, the price of
Mountamoundicros is
1990,000

Yes 749000000

countryCode string Country/region code
according to ISO
3166-1 Alpha-2 at the
time of subscription

Yes RU

959

paymentState int Subscription payment
status. Possible
values:
0. Waiting for payment
1. Obtaining a payment
2. Free trial version
3. Waiting for the
delayed
update/decrease
There is no value for
canceled subscriptions
with an expired validity
period.

No
For active
subscriptions
only (state !=
CLOSED,
REFUNDED,
CLOSE_PENDIN
G, ERROR,
MIGRATED), it
would not be
passed otherwise

1

cancelReason int The reason why the
subscription was
canceled or not
renewed automatically.
Possible values:
0. Subscription
canceled by a user
1. Subscription
canceled by the
system, for example,
due to payment issues
2. Subscription
replaced by a new
subscription
3. Subscription
canceled by the
developer

No. For canceled
subscriptions
with the status of
CLOSED, it
would not be
passed otherwise

0

960

orderId string Last repeating order ID
related to the
subscription purchase.
If the subscription was
canceled due to
payment issues, this
will be the order ID
from the rejected
payment order

Yes 41456..3

acknowledgementStat
e

int Subscription product
status. Possible
values:
0. Not yet confirmed
1. Confirmed

Yes 1

introductoryPriceInfo{} object Introductory
subscription price
information. This is
true only if the
subscription was
purchased at the initial
price.
This field does not
indicate that the
subscription is
currently purchased at
the initial price.

No. Only for
subscriptions
with the PROMO
period, it would
not be passed
otherwise

kind string
This type is an object
of the purchase
subscription in the
androidpublisher
service

Yes androidpublishe
r#subscriptionP
urchase

961

purchaseType int
Subscription purchase
type. This field is
required only if this
purchase was not
made using the
standard in-app
invoicing process.
Possible values:
0. Test (purchase via a
license testing
account)
1. Promo (purchase
using a promo code)

No. For text
environment only

0

introductoryPriceInfo{}

Attribute Type Description Required Example
content

introductoryPriceCurre
ncyCode

string ISO 4217 currency code for
the initial subscription price.
For example, if the price is
indicated in £, then
PriceCurrencycode will be
“GBP”.

No. Only for
promotional
period
subscriptions

RUB

introductoryPriceAmou
ntMicros

string The initial subscription
price, tax excluded. The
currency correspond to
Pricecurrencycode. The
price is expressed in minor
units, where 1,000,000
minor units is one unit of
currency. For example, if
the subscription price is
1.99 EUR, the price of
Mountamoundicros is
1990,000

No. Only for
promotional
period
subscriptions

599000000

962

introductoryPricePerio
d

string The initial price period is
indicated in the ISO 8601
format. The common values
are (but not limited to)
“P1W” (one week), “P1M”
(one month), “P3M” (three
months), “P6M” (six
months) and "p1y" (one
year)

No. Only for
promotional
period
subscriptions

P1Y

introductoryPriceCycle
s

string The number of estimated
periods for the offered initial
price

No. Only for
promotional
period
subscriptions

1

JSON response example

{
"startTimeMillis": "1694431707000",
"expiryTimeMillis": "1697034507000",
"autoRenewing": true,
"priceCurrencyCode": "RUB",
"priceAmountMicros": "749000000",
"countryCode": "RU",
"paymentState": 1,
"orderId": "33252",
"acknowledgementState": 1,
"kind": "androidpublisher#subscriptionPurchase",
"purchaseType": 0,
"introductoryPriceInfo": { "introductoryPriceCurrencyCode": "RUB",
"introductoryPriceAmountMicros": "599000000
", "introductoryPricePeriod": "P1M", "introductoryPriceCycles": "1"
}
}

Error response example

963

Unset

Attribute Type Description Required Example content

error{} object Object contains error data Yes, if response code !=200

error{}

Attribute Type Description Required Example content

code number Response http-code Yes

message date Response code description No

message

code message

400 The subscription purchase token does not match the subscription ID

404 No subscription purchase matches the subscription ID

Getting subscription data (V3)

This method allows retrieving subscription info using a subscription token.

Interaction parameters

For real payments:
GET

https://public-api.rustore.ru/public/subscription/{subscriptionTo
ken}/state

For test payments:
GET

964

Unset

https://public-api.rustore.ru/public/sandbox/subscription/{purcha
seToken}/state

Attribute Type Required Description Location Example
content

Public-Token string Security token
to Public API
Rustore

Yes header N/a

packageNam
e

string App package
name

Yes path com.Masha
AndTheBea
r.HairSal
on

subscriptionI
d

string Product/subsc
ription code

Yes path daily_sub

subscriptionT
oken

string How to get a
subscription
token see in
Billing SDK
Documentatio
n.

Yes path 111.123

965

Attribute Type Description Require
d

Locatio
n

Exampl
e

Public-To
ken

string Jwe token to
Public API
Rustore

Successful response

Attribute Type Description Requir
ed

Example

startTimeMi
llis

string Subscription
provisioning time
in milliseconds
since epoch start.

Yes 1577826955637

expiryTimeM
illis

string Subscription
expiration time in
milliseconds from
the epoch start.

Yes 1609456386128

autoRenewin
g

boolean Whether the
subscription will
automatically
renew at the end
of the current
expiry date.

Yes false

priceCurren
cyCode

string ISO 4217
currency code for
the subscription
price.

Yes RUB

966

priceAmount
Micros

string Subscription price.
Price is expressed
in micro units,
where 1,000,000
micro units
represents one
unit of currency.
For example, if
the subscription
price is 100
rubles, the price of
AmountMicros is
100000000.

Yes 749000000

countryCode string The user's billing
country/region
code at the time
the subscription is
granted.

Yes RU

paymentStat
e

int Subscription
Payment Status.
Available values:

• 0 — awaiting
payment

• 1 — receiving
payment;

• 2 — free trial.

Not available for
cancelled expired
subscriptions.

No, for
active
subscri
ptions
only

1

cancelReaso
n

int The reason why
the subscription
was cancelled or
not renewed

No,
only
for
cancell
ed

0

967

automatically.
Available values:

• 0 — subscription
cancelled by the
user

• 1 — subscription
cancelled by the
system, e.g. due
to a payment
problem.

subscri
ptions
with a
status
of
CLOSED

orderId string Last invoice ID
associated with
the subscription
purchase. If there
is more than one
subscription
account, their
number is added
to the identifier
using the
separator "...",
starting from 0

Yes 41456..3

acknowledge
mentState

int Subscription
Confirmation
Status. Available
values:

• 0 — not yet
confirmed;

• 1 — confirmed.

Yes 1

introductor
yPriceInfo{
}

object Information about
the promotional
subscription
period. This field
does not indicate
that the

No,
only
for
subscri
ptions
with a

N/A

968

https://markdownlivepreview.com/#introductoryPriceInfo
https://markdownlivepreview.com/#introductoryPriceInfo
https://markdownlivepreview.com/#introductoryPriceInfo

subscription is
currently in a
promotional
period.

PROMO

period.

kind string It always passes
the value
androidpublisher
#subscriptionPur
chase

Yes androidpublisher#su
bscriptionPurchase

purchaseTyp
e

int It always passes
0.

Yes 0

introductoryPriceInfo{}

Attribute Ty
pe

Description Required Exampl
e

introductoryPriceCurrenc
yCode

stri
ng

ISO 4217
currency code for
the initial
subscription price.

No, only for
subscription
s with a
PROMO

period.

RUB

introductoryPriceAmountM
icros

stri
ng

Initial subscription
price. Currency
corresponds to
priceCurrencyCod

e. Price is
expressed in
micro units, where
1,000,000 micro
units represents
one unit of
currency. For
example, if the
subscription price
is 100 rubles, the
price of

No, only for
subscription
s with a
PROMO

period.

5990000
00

969

Unset

AmountMicros is
100000000.

introductoryPricePeriod stri
ng

Initial price period
specified in ISO
8601 format. For
example, P1W (one
week), P1M (one
month), P3M (three
months), P6M (six
months), and P1Y

(one year).

No, only for
subscription
s with a
PROMO

period.

P1Y

introductoryPriceCycles stri
ng

Number of billing
periods for the
initial price offer.

No, only for
subscription
s with a
PROMO

period.

1

Successful response

{
"startTimeMillis": "1694431707000",

"expiryTimeMillis": "1697034507000",
"autoRenewing": true,
"priceCurrencyCode": "RUB",
"priceAmountMicros": "749000000",
"countryCode": "RU",
"paymentState": 1,
"orderId": "33252..1",
"acknowledgementState": 1,
"kind": "androidpublisher#subscriptionPurchase",
"purchaseType": 0,
"introductoryPriceInfo":

{
"introductoryPriceCurrencyCode": "RUB",
"introductoryPriceAmountMicros": "599000000",
"introductoryPricePeriod": "P1M",

970

Unset

"introductoryPriceCycles": "1"
}

}

Error parameters

Attribute Type Descriptio
n

Require
d

Example

code string Response
code

Yes ERROR

message string Decoded
response
code

No Jwe token is expired

body{} object Response
body

No N/A

timestamp string Response
time

Yes 2024-01-21T13:34:31.06724034
5+03:00

Error response

{
"code": "ERROR",

"message": "Jwe token is expired",
"body": null,
"timestamp": "2024-01-21T13:51:59.654427798+03:00"

}

971

Unset

Unset

How to retrieve subscription status
This method enables to retrieve subscription status from the payment provider via a subscription
token

For real payments:
GET

https://public-api.rustore.ru/public/subscription/{subscriptionToken}/state

For test payments:
GET

https://public-api.rustore.ru/public/sandbox/subscription/{purchaseToken}/state

If you want to work with Test Payments and Subscriptions, you'll need to create a new key, and
when you create the key, you'll need to specify the methods to test.

Attribute Type Required Description Location Example content

Public-Token string Security token to
Public API Rustore

Yes header

subscription
Token

string The token consists of
invoiceId and userId
parameters.

Token example for
invoiceId = 111 and
userId = 123: 111.123

Yes path 111.123

Response parameters

Attribute Type Required Description Location Example content

code number Response code Yes body

972

message string Response code
definition

No body

timestamp timestam
ptz

Response time Yes body

body{} object Response body No body

body{}

Attribute Type Required Description Location Example
content

is_active boolean Subscription activity flag.
Calculated by subscription
status:

● true — for
currentPeriod
PROMO, START,
STANDARD, GRACE
&& state != CLOSED.

● false — for
currentPeriod HOLD
and/or state =
CLOSED.

Yes body.body{} true

Example:

"code":"200",
"message":"something",
"timestamp":"2023-08-02T10:11:04.655684723+03:00",
"body":
{
"is_active": "true"

}

Response verification

The security token is generated by the security token method and then verified while getting the
response:

● Owner and/or app should not be blocked;
● Token should be valid;

973

Unset

Unset

● The invoice in application_code response should contain the application code which
corresponds to the token owner.

Confirming subscription

The method allows confirming subscription using a subscription token.

Subscriptions do not need to be confirmed to work.

Interaction parameters

For real payments:
GET

https://public-api.rustore.ru/public/glike/subscription/{packageName}/{subs
criptionId}/{purchaseToken}:acknowledge

For test payments:
GET

https://public-api.rustore.ru/public/sandbox/subscription/{packageName}/{su
bscriptionId}/{purchaseToken}:acknowledge

If you want to work with Test Payments and Subscriptions, you'll need to create a new key, and
when you create the key, you'll need to specify the methods to test.

Attribute Type Description Required Location Example

Public-Token string Jwe token to
Public API
Rustore

Successful response

In case of a successful response, the response body is empty.

974

Unset

Error parameters

Attribute Type Description Required Example

code string Response
code

Yes ERROR

message string Decoded
response
code

No Jwe token is expired

body{} object Response
body

No N/A

timestamp string Response
time

Yes 2024-01-21T13:34:31.067240345
+03:00

Error response

{

"code": "ERROR",

"message": "Jwe token is expired",

"body": null,

"timestamp": "2024-01-21T13:51:59.654427798+03:00"

}

975

Response verification

The security token is generated by the security token method and then verified while
getting the response:

● Owner and/or app should not be blocked;

● Token should be valid;

● subscription should be purchased in an application owned by a company that has
received a Public API access token.

Uploading and Publishing Apps using the RuStore API

1. To publish an app, follow these steps:

- First create a draft version with all the necessary app info using the Create Draft
Version method.

- Upload an APK file via the Upload APK file method.
- Upload the required images, including the app icon and screenshots, using the

Upload application icon and Upload screenshots methods.

2. Drafts cannot be edited, though they can be deleted using the Delete Draft method.

3. After filling out all the information, the version can be sent for review via the “Submitting
a draft app release for review” method.

4. Get a list of app versions, their basic information and status via the “Getting app version
status” method.

5. Change publication settings (publication type, date for delayed publication, and % for
partial publication) via the “Change publication settings” method.

6. Once you get your app reviewed and select the publication type - manual, you can
publish the version using the “Manual publication” method.

Please note that you must have at least 1 active app release on the RuStore Console to start
using the RuStore API.

976

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Creating a draft release
Using this method you can create a draft app release and fill it with basic info.

Limitations:

● You can only create one draft per app. Attempting to create multiple drafts will result
in an error;

● drafts submitted via the API are not displayed in the web version of the RuStore
Console. They will become available after the APK is submitted for review and when
the release status changes;

● creation of a draft version is only possible when there is an active app version
available.

● if any of the draft fields are left incomplete or contain missing data, the system will
retrieve the corresponding information from the active app version to fill in the gaps;

● when publishing a draft, it is not possible to select the percentage of users who will
have access to the application;

● the draft must align with the app type, whether it is free or paid. In the event that you
submit a paid version as a draft for a free app, the system will consider the draft as
free, adhering to the app type specified.

● for each app version type (appType) there are corresponding version categories.
Attempting to download the application will result in an error if the category does not
match.

● partial app publication is possible only with automatic (INSTANTLY) or manual
(MANUAL) publication type (parameter - publishType).

Interaction options

POST https://public-api.rustore.ru/public/v1/application/{packageName}/version

Attribute Type Required Location Description Example content

Public-Token string Yes header RuStore
Public API
Access Token

977

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

packageName string Yes path App package
name

com.myapp.exam
ple

appName string No body App release
name

Maximum
length: 50
characters

My app

appType string No body App release
types

Possible
limitations:

● GAMES —
for games;

● MAIN — for
non-gaming
apps.

Passed
categories
must be
unique within
a single
request

GAMES

978

categories string No body Version
categories

Maximum
number is 2
categories

"health", "news"

ageLegal string No body Age ratings

Possible
options:

● «18+»;»;

● «16+»;

● «12+»;

● «7+»;

● «3+».

7+

shortDescriptio
n

string No body Brief app
release
description

979

Maximum
length: 80
characters

fullDescription string No body General app
release
description

Maximum
length: 4000
characters

whatsNew string No body What's New

Maximum
length: 500
characters

moderInfo string No body Developer
comment for
moderator

Maximum
length: 180
characters

980

priceValue string No body App price in
minimum
currency units
(in kopecks),
for example,
"87.99 rubles."
= 8799

Value should
be >0

8799

publishType
(NEW)

string No body Publication
type

Possible
values:

● MANU
AL —
manual
publicat
ion;

● INSTA
NTLY
—
automa
tic
publicat
ion
immedi
ately
after
review;

● DELAY
ED —
delaye

MANUAL

981

d
publicat
ion.

Note: if this
parameter is
not specified,
then it is taken
as
INSTANTLY
by default.

publishDateTim
e
(NEW)

timesta
mptz

No
Yes, if
publishTy
pe =
DELAYED
.

body Date and time
for delayed
publication
format:
yyyy-MM-dd'T'
HH:mm:ssXX
X.
The specified
date must be
no earlier than
24 hours and
no later than
60 days from
the planned
submission
date. The
delayed
publication
date can be
changed.
Note: if
publishType is
MANUAL or
INSTANTLY,
this parameter
can be

2022-07-08T13:24
:41.8328711+03:0
0

982

anything and
will not be
taken into
account.

partialValue
(NEW)

number No body Percentage for
partial
publication

Possible
values:

● 5%
● 10%
● 25%
● 50%
● 75%
● 100%

5

Response parameters

Attribute Type Required Location Description

code string Yes Response code error/OK

message string No Response
decoded
message

983

timestamp timestamptz Yes Response time 2022-07-08T13:24:41.
8328711+03:00

content{} object Yes

content{}

Attribute Type Required Description Example

versionId number Yes App version 243242

Example

curl --location --request POST
'https://public-api.rustore.ru/public/v1/application/com.package.com/version' \
--header 'Content-Type: application/json' \
--header 'Public-Token: {YOURtoken}' \
--data-raw '{

"appName": "App for RuStore",
"appType": "MAIN",
"categories":
[

"news",
"education"

],
"ageLegal": "7+",
"shortDescription": "App for RuStore",
"fullDescription": "fullDescription - App for RuStore",

984

"whatsNew": "whatsNew - App for RuStore",
"moderInfo": "moderInfo - App for RuStore",
"priceValue": 1100

}'

Response

{
"code": "OK",
"message": null,
"body": 243242,
"timestamp": "2023-07-27T10:28:59.039649+03:00"

}

Manual publication
Use this method to publish a previously moderated app version.

Limitations:

● You can publish a moderated version only;
● You can publish a version if the publication type is specified as manual.

Interaction parameters

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/publish

Attribute Type Required Description Example

985

Public-Token string Yes header Rustore Public API access token

packageName string Yes path App package name

versionId number Yes path App version

Response parameters

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response code
description

timestamp timestamptz Yes Response time 2022-07-08T13:24:41.8328711+
03:00

Request example

curl --location --request POST
'https://public-api.rustore.ru/public/v1/application/com.example.pblsh_v2/version/704372/publi
sh' \

--header 'accept: application/json' \

986

--header 'Public-Token: {YOURtoken}'

Response example

{

"code": "OK",

"message": null,

"body": null,

"timestamp": "2023-08-14T15:34:44.016339151+03:00"

}

Changing publication settings
Use this method to change the publication type, delayed publication date and % for partial
publication.

Limitations:

● % for partial publication can only be edited upward;
● if partialValue is 100, the application is considered to be fully rolled out;

987

● you can change either partialValue or publishType and publishDateTime (for delayed
publication).

Interaction Options

988

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/publish
-settings

Attribute Type Requi
red

Location Description Example

Public-Toke
n

string Yes header RuStore Public API
Access Token

packageNa
me

string Yes path App package name

versionId numbe
r

Yes path App version

publishType string No body Publication type

Possible values:

● MANUAL —
manual
publication;

● INSTANTLY
— automatic
publication
immediately
after review;

● DELAYED —
delayed
publication.

MANUAL

989

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

publishDate
Time

timest
amptz

No
Yes, if
publis
hType
=
DELA
YED

body Date and time for
delayed publication:
format:
yyyy-MM-dd'T'HH:m
m:ssXXX.
The specified date
must be no earlier
than 24 hours and
no later than 60
days from the
planned submission
date. The delayed
publication date can
be changed.
Note: if publishType
is MANUAL or
INSTANTLY, this
parameter can be
anything and will not
be taken into
account.

2022-07-08T1
3:24:41.8328
711+03:00

partialValue numbe
r

No body Percentage for
partial publication

Possible values:

● 5%
● 10%
● 25%
● 50%
● 75%
● 100%

5

990

Response parameters

Attribute Type Requir
ed

Location Description

code string Yes Response code error/OK

message string No Response decoded
message

timestamp timestamptz Yes Response time 2022-07-08T13:24:41.8
328711+03:00

Example for changing % for partial publication

curl --location
'https://public-api.rustore.ru/public/v1/application/com.example.pblsh_v2/version/704372/
publish-settings' \

--header 'accept: application/json' \

--header 'Content-Type: application/json' \

--header 'Public-Token: {YOURtoken}\

--data '{

"partialValue": 100

}'

991

Response example

{

"code": "OK",

"message": null,

"body": null,

"timestamp": "2023-08-14T15:35:12.701709488+03:00"

}

Getting app version status
Use this method to obtain basic version info or either check a version status.

Limitations:

● Note that 20 versions are displayed on each page by default, you can display up to
100 versions per page by specifying a value in the size parameter;

● You cannot use pagination and filtering parameters together according to version 1
(or pagination with a pair of parameters page and size or ids).

992

Interaction Options

GET
https://public-api.rustore.ru/public/v1/application/{packageName}/version?ids=704095&page
=0&size=2

Attribute Type Required Location Description Example
content

Public-Tok
en

string Yes header RuStore Public
API Access Token

packageNa
me

string Yes path App package
name

com.myapp.
example

ids number No query id of a specific
version

Set if necessary to
obtain a specific
version

743103

page number No query Page number.

Starts from 0

0

size number No query Number of
reviews on a
page.

Default - 20
Maximum - 100

100

993

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Response parameters

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response
decoded
message

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.8328711+0
3:00

body{} object Yes

body{}

Attribute Type Required Description Example

content[] massive Yes Array containing a
list of versions

pageNumber number Yes Current page
number

0

pageSize number Yes Page size 2

totalElements number Yes Total items 5

totalPages number Yes Total pages 3

994

content[]

Attribute Type Required Description Example

versionId number Yes version ID 704372

appName string Yes App name Test API

appType string Yes App type MAIN or GAME

versionName string Yes App name 1.0

versionCode number Yes Version code 6

versionStatus string Yes Version status Possible values

ACTIVE,

PARTIAL_ACTIVE,

READY_FOR_PUBLICATIO
N,

PREVIOUS_ACTIVE,

ARCHIVED,

REJECTED_BY_MODERAT
OR,

TAKEN_FOR_MODERATIO
N,

MODERATION,

AUTO_CHECK,

AUTO_CHECK_FAILED,

995

DRAFT,

DELETED_DRAFT,

REJECTED_BY_SECURITY;

publishType string Yes Publication type Possible values

● MANUAL
● INSTANTLY
● DELAYED

publishDateTime timestam
ptz

Yes Date and time for
delayed publication

2023-08-04T09:36:06.431+0
0:00

sendDateForMod
er

timestam
ptz

Yes Submission date 2023-08-11T12:03:06.303+0
0:00

partialValue number Yes Percentage for partial
publication

-1 = 100%

all other values are
consistent

whatsNew string Yes What's new? Bugs fixed

priceValue number Yes Price if the app is paid 0

paid boolean Yes Is the application
paid?

true/false

996

Request example

curl --location
'https://public-api.rustore.ru/public/v1/application/com.example.pblsh_v2/version?page=0
&size=2' \

--header 'accept: application/json' \

--header 'Public-Token: {YOURtoken}’

Response example

997

{

"code": "OK",

"message": null,

"body": {

"content": [

{

"versionId": 704372,

"appName": "API test",

"appType": "MAIN",

"versionName": "1.0",

"versionCode": 6,

"versionStatus": "ACTIVE",

"publishType": "MANUAL",

"publishDateTime": "2023-08-14T12:34:43.925+00:00",

"sendDateForModer": "2023-08-11T12:03:06.303+00:00",

"partialValue": -1,

"whatsNew": "Bugs fixed",

"priceValue": 0,

"paid": false

},

{

998

"versionId": 704197,

"appName": "PO test API",

"appType": "MAIN",

"versionName": "1.0",

"versionCode": 1,

"versionStatus": "PREVIOUS_ACTIVE",

"publishType": "INSTANTLY",

"publishDateTime": "2023-08-04T09:36:06.431+00:00",

"sendDateForModer": "2023-08-04T09:20:23.551+00:00",

"partialValue": -1,

"whatsNew": "First version",

"priceValue": 0,

"paid": false

}

],

"pageNumber": 0,

"pageSize": 2,

"totalElements": 2,

"totalPages": 1

},

"timestamp": "2023-08-14T15:38:50.413186769+03:00"

999

}

Uploading screenshots
Use this method to upload app screenshots.

Limitations:

● screenshots can be either vertical or horizontal;
● screenshot aspect ratio - 16:9 (vertical) and 9:16 (horizontal);
● uploaded file sides - not less than 320px and not over than 3840px;
● upload file format: .jpg or .png;
● file size: up to 3 MB;
● various orientations are not allowed. For instance, if the user has already uploaded a

vertical orientation (PORTRAIT) and attempts to load a horizontal one
(LANDSCAPE), an error will be returned in response to the request.

● when uploading more than 10 screenshots, existing screenshots will become
inactive. For example, if you upload two screenshots with the “ordinal” = 7
parameter, the last uploaded screenshot will be active.

1000

Interaction options

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/image/
screenshot/{orientation}/{ordinal}

Attribute Type Required Location Description

Public-Token string Yes header RuStore Public API Access
Token

packageName number Yes path App ID

versionId number Yes path App Release

orientation string Yes path Image orientations

Possible options:

● LANDSCAPE — horizontal;

● PORTRAIT — vertical.

ordinal number Yes path Screenshot serial number

Possible values:

0 to 9

1001

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Form data

Attribute Type Required Description

file multipart/form-data Yes File

Response parameters

Attribute Type Required Description Example content

code string Yes Response
code

error/OK

message string No Response
decoded
message

timestamp timestam
ptz

Yes Response
time

2022-07-08T13:24:41.83287
11+03:00

Example

curl --location --request POST
'https://public-api.rustore.ru/public/v1/application/com.package.example/version/123/imag
e/screenshot/landscape/1' \

--header 'Content-Type: application/json' \

1002

--header 'Public-Token: {YOURtoken}' \

--form 'file=@"/Users/User/Downloads/img.jpg"'

Uploading an app icon

Use this method to upload an app icon.

Limitations:

● jpeg and png files only;
● file size should not exceed 3 MB;
● uploaded image size is 512×512 px.

Interaction options

POST https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/image/icon

Attribute Type Required Location Description

Public-Token string Yes header RuStore Public API Access Token

packageName number Yes path App ID

versionId number Yes path App Release

1003

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Form data

Attribute Type Required Description

file multipart/form-data Yes File

Response parameters

Attribute Type Required Description Example content

code string Yes Response
code

error/OK

message string No Response
decoded
message

timestamp timestamptz Yes Response time 2022-07-08T13:24:41.8328
711+03:00

Example

curl --location --request POST
'https://public-api.rustore.ru/public/v1/application/com.package.example/version/123/image/ic
on' \
--header 'Content-Type: application/json' \
--header 'Public-Token: {YOURtoken}' \
--form 'file=@"/Users/User/Downloads/img.jpg"'

1004

Uploading an APK file

Use this method to upload an apk file for publication. It can be further updated.

Limitations:

● .apk files only;
● file size should not exceed 2.5 MB;
● uploaded APK version should be higher than the current active one.

You can upload two APK files at once:

● with different developer signatures to exclude update errors from users. When
uploading to the showcase, RuStore will render a file with a similar signature for
each user separately.

● which support various services (Huawei Mobile Services and Google Mobile
Services) for RuStore to give the user an APK file, which includes services adapted
to his device.

● when uploading multiple files, be sure to specify which one is Huawei Mobile
Services and which file will be available to all users by default. You can upload no
more than 10 files.

Please note that as part of the July 20 update, a required IsMainApk parameter was added
to the method below. We also ask you to update your pipelines.

1005

Interaction options

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/apk

Attribute Type Required Location Description

Public-Token string Yes header RuStore Public API Access
Token

packageName string Yes path App package name

versionId number Yes path App release

servicesType
(NEW)

string No query Type of service used by the app.
Possible options:

● HMS — for APK-files with
Huawei Mobile Services,

● Unknown — is set by
default if the field is
empty

isMainApk
(NEW)

boolea
n

Yes query Attribute that is assigned to the
main apk file. Values:

● true — main APK file
● false — by default

1006

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

form data

Attribute Type Required Location Description

file multipart Yes Binary File

Response parameters

Attribute Type Required Description Example content

code string Yes Response
code

error/OK

1007

message string No Response
message

Error details. Possible options:

● Maximum number of apk files
is already uploaded

● Main apk file is already
uploaded

● Apk file with the Huawei Mobile
Services is already uploaded

● Apk file with the Huawei Mobile
Services can not be main file

● Apk file has different version
code than the one previously
uploaded

● The code of this version must
be larger than that of the
previous one

● The package does not match
the previous version

● A package with this name
already exists. Rename the
package.

timestamp timestamp
tz

Yes Response
time

2022-07-08T13:24:41.8328711+03:00

1008

Example

curl --location --request POST
'https://public-api.rustore.ru/public/v1/application/com.package.example/version/123/a
pk?servicesType=Unknown&isMainApk=true'' \

--header 'Public-Token: {YOURtoken}' \

--form 'file=@"/Users/User/Downloads/package.apk"'

List of App Categories

Category App release type

business MAIN

state MAIN

foodAndDrink MAIN

health MAIN

books MAIN

news MAIN

lifestyle MAIN

education MAIN

1009

https://public-api.rustore.ru/public/v1/application/com.package.example/version/123/apk?servicesType=Unknown&isMainApk=true
https://public-api.rustore.ru/public/v1/application/com.package.example/version/123/apk?servicesType=Unknown&isMainApk=true

social MAIN

adsAndServices MAIN

pets MAIN

purchases MAIN

tools MAIN

travelling MAIN

entertainment MAIN

parenting MAIN

sport MAIN

gambling MAIN

transport MAIN

finance MAIN

arcade GAMES

quiz GAMES

puzzle GAMES

1010

race GAMES

children GAMES

ar GAMES

indie GAMES

casino GAMES

casual GAMES

card GAMES

music GAMES

board GAMES

adventure GAMES

rolePlaying GAMES

family GAMES

simulator GAMES

word GAMES

sports GAMES

1011

strategy GAMES

action GAMES

Deleting a draft release
Use this method to delete unnecessary drafts.

Limitations:

● you can only delete versions that have not yet been published.

Interaction options

DELETE
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}

Attribute Type Required Location Description

Public-Token string Yes header RuStore Public API Access Token

packageName string Yes path App package name

versionId number Yes path App Release

1012

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Response parameters

Attribute Type Required Description Example content

code string Yes Response code error/OK

message string No Response
decoded message

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.832
8711+03:00

Example

curl --location --request DELETE

'https://public-api.rustore.ru/public/v1/application/com.package.example/version/123' \

--header 'Content-Type: application/json' \

--header 'Public-Token: {YOURtoken}'

1013

Submitting a draft app release for review
Use this method to submit a draft app release for review.

Interaction options

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/version/{versionId}/commit
?priorityUpdate={priorityUpdate}

Attribute Type Required Location Description

Public-Token string Yes header RuStore Public API Access Token

packageName string Yes path App package name

versionId number Yes path App release

priorityUpdate number No query Update Priority

Possible values:

0 to 5, where 0 is the minimum and 5 is the
maximum value

Default is 0

Response parameters

1014

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

Attribute Type Required Description Example content

code string Yes Response code error/OK

message string No Response decoded
message

Error detail. Possible
values:

● Version must
have at least
one main
non-HMS
apk-file

● Version must
have not only
HMS apk-file.

● Packages for
version with id =
Is not found.

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.
8328711+03:00

1015

Using the RuStore API for Review Management

General Review Management Workflow

1. Developers have several options for managing their app reviews using the RuStore
API:

- receive feedback on their application by utilizing the "Get App Feedback"
method.

- receive feedback in CSV through the "Receiving Feedback in .csv Format"
method.

2. Responding to Reviews: Developers can actively engage with user reviews by
employing the "Respond to Review" method.

3. Moderation Status: To check the moderation status of a response to a review,
developers can use the "Get the Status of a Response to a Review" method

4. Editing Responses: Developers can also modify a previously published response to
a review by utilizing the "Change Response to Review" method.

5. Deleting Responses: Developers can delete a response to a review using the
"Delete a Response to a Review" method whenever so required.

6. Getting App Rating: To retrieve the overall app rating, developers can employ the
"Get App Rating" method.

For all of these methods, it is essential to obtain an access token for the RuStore API,
which has a lifespan of 15 minutes.

Possible error codes

Code Value

200 OK

400 Invalid request

401 Not authorized

1016

404 Not found

500 Internal Server Error

Example response in case of error

{

"code": "ERROR",

"message": "404",

"body": null,

"timestamp": "2023-05-30T20:08:14.120231216+03:00"

}

Getting app feedback

This method enables you to access a list of the most recent reviews for your application, as well
as retrieve individual reviews.

Key Points to Note:

- By default, each page displays 20 reviews. However, you can customize this to display
up to 100 reviews per page by specifying a value in the "size" parameter.

- It's important to be aware that you cannot apply pagination and filtering parameters to
retrieve just one review. Pagination should be used with a combination of parameters
such as "page," "size," or "id."

- If a user edits a review, the review is assigned an updated review ID, and the "edited"
attribute is set to "true."

- The default sorting order is based on the date the review was published, using the
"updatedAt" parameter, with the most recent reviews appearing first.

1017

Interaction Options
GET
https://public-api.rustore.ru/public/v1/application/{packageName}/comment?id={id}&page={n
umber}&size={size}

Attribut
e

Typ
e

Required Location Description Example

Public-T
oken

stri
ng

Yes header RuStore API access token

package
Name

stri
ng

Yes path Application package name.
Maximum length – 50 characters

com.myap
p.example

id nu
mb
er

No query ID of a specific review. Asked if
you need to get specific feedback

743103

page nu
mb
er

No query Page number. Starts from 0 0

size nu
mb
er

No query Number of reviews on the page.
Default - 20. Maximum - 100

100

Response options

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response code
description

timestam
p

timestam
ptz

Yes Response time 2022-07-08T13:24:41.83287
11+03:00

body{} object No

body{}

Attribute Type Required Location Example

package
Name

string Yes Application package
name

com.myapp.example

1018

appId numb
er

Yes Application ID 385727

comment
Id

numb
er

Yes Review ID 697535

userNam
e

string Yes Review author's name Irina

appRatin
g

numb
er

Yes Review rating 4

comment
Status

string Yes Review status PUBLISHED

comment
Date

times
tampt
z

Yes Review date 2023-05-22 16:32:08.008

comment
Text

string Yes Review text Awesome!

likeCount
er

numb
er

Yes Number of likes to a
review from other users

5

dislikeCo
unter

numb
er

Yes Number of dislikes for a
review from other users

0

updatedA
t

times
tampt
z

Yes Date of review
moderation and
publication

2022-10-14 15:14:33.033

appVersi
onName

string Yes App version 1.4

edited boole
an

Yes Sign of review edits True - edited (review was
edited and rewritten).
False - no

Example for multiple reviews

1019

curl --location 'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/comment'
\
--header 'Content-Type: application/json' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.jrVl3YT99saGcata9fzN6_
QpoQhDsv8oBUAj9p7UyR4Ga5PM8TTyNbpTKIeaIjGoEfsBMJx0aw0b7fhD04bhSp7SW
EBKGBTzFCjwOZ5_Fcezq0-NOMSayzoPttYa7oMRDiqNS4rqaUOdCUrf9qlDyEq3BGoU
YCaUD7L5399l51NhSLrWpoPx1l4ZLVJ5bjlhiCoPAtLArnulq5LBoDk3naoGaRHabkkffcuc
EjA45uNpCsq0fx77Lk4YhN30LOccyImE-O8fUq8YryMWv4w-ZmWjax1oT9nRgO95r9EY
G7Gwdekg2ILuWnsofiMXME8t1EiEuUmDpNTEyS9SiUMRwQ.lSJBV1mSmHehuqVs.8p
XL_GRLwEJgIWZOzkklKgrsGKKJrG9kv1AIdD0PPU8KtsY8GVAc5xaaQgeyjSsJiSUvma
_IohAaIBwP-tjTRxrnzVinMhKAJMCbiMIVqsQSRDB5j_mf91nTNewQkWJwB33Rvxd9F4T
t-Tk-1QKALU8tAT_HXAI.v9WBgx8T6yFDpeMrjw-ECQ'

Response example

1020

{
"code": "OK",
"message": null,
"body": [

{
"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 2142370751,
"userName": "Saber",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-06-13 11:58:06.006",
"commentText": "Good App, nice done!",
"likeCounter": 0,
"dislikeCounter": 0,
"updatedAt": "2023-06-13 11:59:50.050",
"appVersionName": "1.4",
"edited": false

},
{

"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 1981700287,
"userName": "Victor",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-04-27 18:54:27.027",
"commentText": "Nice app! ;#",
"likeCounter": 0,
"dislikeCounter": 0,
"updatedAt": "2023-04-27 18:55:30.030",
"appVersionName": "1.3",
"edited": false

},
{

"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 1981699775,
"userName": "Gregory",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-04-27 18:54:18.018",
"commentText": "Nice app!",
"likeCounter": 1,
"dislikeCounter": 0,
"updatedAt": "2023-04-27 18:55:30.030",
"appVersionName": "1.3",
"edited": false

},
{

"packageName": "ru.voonsh.push",

1021

"appId": 227169215,
"commentId": 237681343,
"userName": "Ibrahim",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2022-09-15 17:26:46.046",
"commentText": "Increasing the DAU)))",
"likeCounter": 1,
"dislikeCounter": 1,
"updatedAt": "2022-09-16 18:06:39.039",
"appVersionName": null,
"edited": false

}
],
"timestamp": "2023-06-15T07:32:55.505979576+03:00"

}

Example for a specific review

1022

{
"code": "OK",
"message": null,
"body": [

{
"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 2142370751,
"userName": "Saber",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-06-13 11:58:06.006",
"commentText": "Good App, nice done!",
"likeCounter": 0,
"dislikeCounter": 0,
"updatedAt": "2023-06-13 11:59:50.050",
"appVersionName": "1.4",
"edited": false

},
{

"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 1981700287,
"userName": "Victor",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-04-27 18:54:27.027",
"commentText": "Nice app! ;#",
"likeCounter": 0,
"dislikeCounter": 0,
"updatedAt": "2023-04-27 18:55:30.030",
"appVersionName": "1.3",
"edited": false

},
{

"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 1981699775,
"userName": "Gregory",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-04-27 18:54:18.018",
"commentText": "Nice app!",
"likeCounter": 1,
"dislikeCounter": 0,
"updatedAt": "2023-04-27 18:55:30.030",
"appVersionName": "1.3",
"edited": false

},
{

"packageName": "ru.voonsh.push",

1023

"appId": 227169215,
"commentId": 237681343,
"userName": "Ibrahim",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2022-09-15 17:26:46.046",
"commentText": "Increasing the DAU)))",
"likeCounter": 1,
"dislikeCounter": 1,
"updatedAt": "2022-09-16 18:06:39.039",
"appVersionName": null,
"edited": false

}
],
"timestamp": "2023-06-15T07:32:55.505979576+03:00"

}

Example for a specific review

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/comment?id=19816997
75' \
--header 'Content-Type: application/json' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.h635qF_TZc43287jXQVI
mu_-o4eVFQwrQYe2WnjbywC_KUC4oX6W3ssyPWzlAugd2RELbVCTk1wiDdKwPIbkOJ
C_HdF0yAmnPg0PRxwyfCHblRuccuuEg_l6sKY1Fqrh6kH3D5N2i_HnDei-hTusAvHR333
ZstAK73dc-4Ecn24jb1XyBsdg0_KddKaRpEjTMSudIV6rdpBNMlQRUyQufrP2RMXK5Kc_
0gY0iA-tazQoOJmK4xstHmuFbSBx3J6oN5QIlYonx0LZ6ABf2fD0O1E7LFsVUMd2bOdLY
g5id5bTRXKd238iB5snmPhGJJN3d6v8xdoV5TdOMGPvjO0A5A.-mSbEMAvEglyEOJu.e
KxraHkohwEcn3cG4glUBnwypjnapol4WnwhQGyKe-TDq9TGNj9CO4hnXGh4UPSRI55w
73pJwSCuDe7LfsQ8zqBVjirT_HXypowHsWBwvBG-6rwSRvhZsad2YY8wHTZeXOddVyn
WnESoKAnXIdImafEbIWN1Hik.VJ-b1KxDxMrgJTz_Vuul2Q'

1024

Example response

{
"code": "OK",
"message": null,
"body": [

{
"packageName": "ru.voonsh.push",
"appId": 227169215,
"commentId": 1981699775,
"userName": "Gregory",
"appRating": 5,
"commentStatus": "PUBLISHED",
"commentDate": "2023-04-27 18:54:18.018",
"commentText": "Nice app!",
"likeCounter": 1,
"dislikeCounter": 0,
"updatedAt": "2023-04-27 18:55:30.030",
"appVersionName": "1.3",
"edited": false

}
],
"timestamp":

"2023-06-15T07:13:16.309841987+03:00"
}

Receiving feedback in .csv
This method enables you to obtain all reviews in CSV format for a specified time frame.

Key Limitations:

- The minimum duration for selecting reviews is 1 day.

- The maximum duration for selecting reviews is limited to 92 days.

Interaction Choices

GET
https://public-api.rustore.ru/public/v1/application/{packageName}/comment/export?from={da
te_from}&to={date_to}

1025

Attribute Type Required Location Description Example

Public-Tok
en

strin
g

Yes header RuStore API access token

packageN
ame

strin
g

Yes path Application package name.
Maximum length: 50 characters

com.myap
p.example

from date Yes query Starting date for uploading reviews,
specified in YYYY-MM-DD format.

2023-06-0
1

to date Yes query Ending date for uploading reviews,
inclusive, specified in
YYYY-MM-DD format.

2023-06-0
5

Response options
.csv file

File content

Column title Description

Package Name Application package name

User App Version Application version

Review Submit Date and
Time

Review date

Review Last Update Date
and Time

Date of moderation and publication

Star Rating Review rating

Review Text Review text

User name Review author's name

1026

Comment Id Review ID

Like counter Number of likes to a review from other users

Dislike counter Number of dislikes to a review from other users

edited Sign of review edits

Example

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/comment/export?from=2
023-03-03&to=2023-04-28' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.h635qF_TZc43287jXQVI
mu_-o4eVFQwrQYe2WnjbywC_KUC4oX6W3ssyPWzlAugd2RELbVCTk1wiDdKwPIbkOJ
C_HdF0yAmnPg0PRxwyfCHblRuccuuEg_l6sKY1Fqrh6kH3D5N2i_HnDei-hTusAvHR333
ZstAK73dc-4Ecn24jb1XyBsdg0_KddKaRpEjTMSudIV6rdpBNMlQRUyQufrP2RMXK5Kc_
0gY0iA-tazQoOJmK4xstHmuFbSBx3J6oN5QIlYonx0LZ6ABf2fD0O1E7LFsVUMd2bOdLY
g5id5bTRXKd238iB5snmPhGJJN3d6v8xdoV5TdOMGPvjO0A5A.-mSbEMAvEglyEOJu.e
KxraHkohwEcn3cG4glUBnwypjnapol4WnwhQGyKe-TDq9TGNj9CO4hnXGh4UPSRI55w
73pJwSCuDe7LfsQ8zqBVjirT_HXypowHsWBwvBG-6rwSRvhZsad2YY8wHTZeXOddVyn
WnESoKAnXIdImafEbIWN1Hik.VJ-b1KxDxMrgJTz_Vuul2Q'

1027

Leaving a reply to review
This method allows you to leave a response to a review.

Interaction Options

POST
https://public-api.rustore.ru/public/v1/application/{packageName}/feedback?commentId={co
mmentId}

Attribute Type Required Location Description Example

Public-Tok
en

string Yes header RuStore Public API
Access Token

packageN
ame

string Yes path App package name.
Maximum length –
50 characters

com.myapp.example

commentI
d

numb
er

Yes query User Review ID 748223

message string Yes body Text of response to
review

Thanks for your
feedback. It means a
lot to us

Interaction options

Attribute Type Required Description Example content

code string Yes Response code error/OK

message string No Response decoded
message

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.832871
1+03:00

1028

https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API
https://help.rustore.ru/rustore/for_developers/worki_with_RuStore_API/authorization_token_RuStore_API

body{} object Yes

body{}

Attribute Type Required Description Example
content

id number Yes User Review ID 748479

Example

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/feedback?commentId=2
142370751' \
--header 'Content-Type: application/json' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.ziOR4J-_3A36M55IMdJqx
ck4Lktk9GFe6vvdRFBkIICA6z4WLLUxdEyHNdMWYomBs9MkJecCaCStOQ5YtmHvFIR
K8aoj4c386WwUBXmTDXN_BJg2puwuLivMJWuAhgveZpC7afZCwM6m5RgLi538BAjFV
_gE8XvbSUKlhWhkEvIzgrK2zk211SRUVXaAdrWEz5NNSSrQhyEv1fiMgQNmV9Sehp8fx
P7G_9HkAWVtfNvgEiTbFHMTO-qpWtdh5Ts440Du9MC7PL59IUmXts1Khx6xbuUWLQe
3WHPQCBmKezpxtI-l9Ms4F-iopZy-bXzUaUMFsaQu8Jh4kFvztFenYg.UPvgd5jKQcFO-M
RE.zHHu-P5GSwUTvEMae-bu337jxpq25TbftTC7oF8r0APCfUqdx55CbO-PuIeGdjN08K4
IC8GsWhLmKr9mqEeV9L-Dh5QSqA6M7GsLH8LAqrR1UX0Z849pyhrOt_Pz4SJ3YeHdu-
ITfTL5Ysr0kECMXWIMcE24X8U.zHXeYuxDJf-Wtl9Vn0betw' \
--data '{
"message": "Thank you"

}'

Example response

{
"code": "OK",
"message": null,
"body": {

"id": 2149775551
},
"timestamp": "2023-06-02T16:36:57.847391009+03:00"

}

1029

Getting review response status

Use this method to obtain the response-to-review moderation status or either information on a
separate response.
Restrictions:

- By default, each page displays 20 reviews. You can display up to 100 reviews per
page by specifying a value in the size parameter;

- You cannot use pagination and filtering parameters together based on 1 response to
a review (or pagination by specifying a pair of parameters page and size or id).

Interaction Options

GET
https://public-api.rustore.ru/public/v1/application/{packageName}/feedback/?id={id}&page={
number}&size={size}

Attribute Type Required Location Description Example
content

Public-To
ken

string Yes header
RuStore Public API Access
Token

package
Name

string Yes path App package name. Maximum
length: 50 characters

com.myapp.e
xample

feedback
Id

num
ber

No path id of a specific response-to-
review, it is set to get
information about a specific
response to a review

743103

id num
ber

No query id of a specific response-to
-review, set if necessary to
receive a specific review

743103

1030

page num
ber

No query Page number. Starts from 0 0

size num
ber

No query Number of reviews on a page.
Default - 20, maximum - 100

100

Response parameters

Attribute Type Required Description Example content

code string Yes Response code error/OK

message string No Response decoded
message

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.832871
1+03:00

body{} object Yes

body{}

Attribute Type Required Description Example content

id number Yes Review response
ID

748479

commentId number Yes Review ID 748223

text string Yes Response text This is a response to a user
review

1031

status string Yes Review response
status

PUBLISHED — everything is
published successfully;
MODERATION — under
moderation;
REJECTED — rejected by
moderation;
DELETED — deleted by
developer or changed.

date string Yes Last modified
date and time

2023-06-01 18:10:43.043

Example 1

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/feedback?id=21775597
43' \
--header 'Public-Token: eyJlb......VcQVmNyw'

Response 1

{
"code": "OK",
"message": null,
"body": [

{
"id": "2177559743",
"commentId": "2142370751",
"text": "Thank you",
"status": "PUBLISHED",
"date": "2023-06-22T09:46:18.115+00:00"

}
],
"timestamp": "2023-06-22T12:46:30.193419294+03:00"

1032

Confirm subscription via a subscription token

This method allows confirming subscription via a subscription token.

At that, confirmation of subscription is not required for subscriptions to function.

Interaction Options

POST
https://public-api.rustore.ru/public/glike/subscription/{packageName}/{subscriptionId}/{purch
aseToken}:acknowledge

Attribute Type Description Required Location Example
content

Public-Token string Rustore Public API
access token

Yes header

packageNam
e

string App package name Yes path

subscriptionId string Subscription
product code

Yes path

purchaseTok
en

string Retrieving a
subscription token

Yes path

Successful Response Options

If your response is successful, the response body remains empty.

1033

Request Validation

When a request is received, the authorization token obtained by GET method (Getting
authorization token) is verified:

● owner and/or application must not be blocked;
● token must be valid;
● subscription was purchased in an app owned by the company that received the

Public API access token.

1034

Editing review response
Use this method to change your review response text.
Interaction Options
POST
https://public-api.rustore.ru/public/v1/application/{packageName}/feedback/{feedbackId}

Attribute Type Required Location Description Example

Public-Tok
en

string Yes Header RuStore API access token

packageN
ame

string Yes path Application package name.
Maximum length – 50
characters

com.myapp.exa
mple

feedbackI
d

numb
er

No path Review response ID that
needs to be changed

743103

message string Yes body Edited response We found a
misprint in our
response so we
edited it

Response options

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response code
description

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.832871
1+03:00

body{} string Yes

1035

body{}

Attribute Type Required Description Example

id number Yes New review response ID. The previous
ID takes on the DELETED status. If
there is a change, it will further be
displayed with the updated ID

748479

Example

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/feedback/2149775551' \
--header 'Content-Type: application/json' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.ziOR4J-_3A36M55IMdJqx
ck4Lktk9GFe6vvdRFBkIICA6z4WLLUxdEyHNdMWYomBs9MkJecCaCStOQ5YtmHvFIR
K8aoj4c386WwUBXmTDXN_BJg2puwuLivMJWuAhgveZpC7afZCwM6m5RgLi538BAjFV
_gE8XvbSUKlhWhkEvIzgrK2zk211SRUVXaAdrWEz5NNSSrQhyEv1fiMgQNmV9Sehp8fx
P7G_9HkAWVtfNvgEiTbFHMTO-qpWtdh5Ts440Du9MC7PL59IUmXts1Khx6xbuUWLQe
3WHPQCBmKezpxtI-l9Ms4F-iopZy-bXzUaUMFsaQu8Jh4kFvztFenYg.UPvgd5jKQcFO-M
RE.zHHu-P5GSwUTvEMae-bu337jxpq25TbftTC7oF8r0APCfUqdx55CbO-PuIeGdjN08K4
IC8GsWhLmKr9mqEeV9L-Dh5QSqA6M7GsLH8LAqrR1UX0Z849pyhrOt_Pz4SJ3YeHdu-
ITfTL5Ysr0kECMXWIMcE24X8U.zHXeYuxDJf-Wtl9Vn0betw' \
--data '{
"message": "Thank you very much!"

}'

Response example

{
"code": "OK",
"message": null,
"body": {

"id": 2149807039
},
"timestamp": "2023-06-15T08:26:25.355326578+03:00"

}

1036

Deleting review response
Use this method to delete a review response.
Interaction Options

DELETE
https://public-api.rustore.ru/public/v1/application/{packageName}/feedback/{feedbackId}

Attribute Type Required Location Description Example

Public-Token string Yes header RuStore API access token

packageNam
e

string Yes path Application package name.
Maximum length – 50
characters

com.myapp.e
xample

feedbackId number No path Response ID that needs to
be deleted

743103

Response parameters

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response code
description

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.832871
1+03:00

1037

Example

curl --location --request DELETE
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/feedback/2149807039' \
--header 'Content-Type: application/json' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.1r3cxOdxuNpypJSWXMQ
4oAVYhqh6_3RlqKfItkhthhTzisiRYnboOkZpw_r5J9w0S5G8u-BexQeganyoG3MbCJ5QP2
X6945wQMxlPkl81UKewkZuFrjsH36USk6dnnMbjT8Yw8nA4Yr0n8Oinspj3zkw66kZd-57E
JvoMfneCEyTBY1mYEoc2DnfUa99syX1kIgX7Jfipn4yRm3pxWad5aesCK3eQFlP57CBir
m8qGecDzkKcV1DeBx-qXK1S72FaXId11zN-rbe14U1z8jCCiEHhYrTIT9ci7OKF7OqF2kg
RRVdCoO3eRWl4JWF-JfGAeYcv7rEpNLC32pEm5FOCA.khXZSeTodz2mVoNd.fKVjmk
HUEM9AW7S_mYf-LFO4T26Lqf4RNSyjyNmFfsxZybDKahZgnaJ4lXYq-MPVN-o39eg1jIS
moJcBonqS-0rIFe1P3CAM5cbNiSsTCX1r-cVdf4ei998KKGMg8bZL24-uLfxgcJSBBTgmU
kyvf_KqH_dcxmQ.DwbK_08RLgHibat3h5dvkQ'

Response example

{
"code": "OK",
"message": null,
"body": null,
"timestamp": "2023-05-30T20:07:22.365025849+03:00"
}

Getting app rating
Use this method to get an app rating.
Interaction Options

POST https://public-api.rustore.ru/public/v1/application/{packageName}/comment/statistic

Attribute Type Requir
ed

Location Description Example

Public-Tok
en

strin
g

Yes header RuStore API access token

packageN
ame

strin
g

Yes path Application package name.
Maximum length – 50 characters

com.myapp
.example

1038

Response parameters

Attribute Type Required Description Example

code string Yes Response code error/OK

message string No Response code description

timestamp timestam
ptz

Yes Response time 2022-07-08T13:24:41.8328
711+03:00

body{} object Yes

body{}

Attribute Type Required Description Example

ratings object Yes

averageUserRating number Yes Average user app rating 4

totalRatings number Yes Total number of ratings 0

totalResponses number Yes Total number of unanswered
reviews

0

ratingsNoComments number Yes Total number of ratings without
reviews

0

raitings{}

Attribute Type Required Description Example

amountFive number Yes Total 5-star rates 0

amountFour number Yes Total 4-star rates 3

amountThree number Yes Total 3-star rates 0

amountTwo number Yes Total 2-star rates 0

amountOne number Yes Total 1-star rates 0

1039

Example

curl --location
'https://public-api.rustore.ru/public/v1/application/ru.voonsh.push/comment/statistic' \
--header 'Public-Token:
eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.1r3cxOdxuNpypJSWXMQ
4oAVYhqh6_3RlqKfItkhthhTzisiRYnboOkZpw_r5J9w0S5G8u-BexQeganyoG3MbCJ5QP2
X6945wQMxlPkl81UKewkZuFrjsH36USk6dnnMbjT8Yw8nA4Yr0n8Oinspj3zkw66kZd-57E
JvoMfneCEyTBY1mYEoc2DnfUa99syX1kIgX7Jfipn4yRm3pxWad5aesCK3eQFlP57CBir
m8qGecDzkKcV1DeBx-qXK1S72FaXId11zN-rbe14U1z8jCCiEHhYrTIT9ci7OKF7OqF2kg
RRVdCoO3eRWl4JWF-JfGAeYcv7rEpNLC32pEm5FOCA.khXZSeTodz2mVoNd.fKVjmk
HUEM9AW7S_mYf-LFO4T26Lqf4RNSyjyNmFfsxZybDKahZgnaJ4lXYq-MPVN-o39eg1jIS
moJcBonqS-0rIFe1P3CAM5cbNiSsTCX1r-cVdf4ei998KKGMg8bZL24-uLfxgcJSBBTgmU
kyvf_KqH_dcxmQ.DwbK_08RLgHibat3h5dvkQ'

Response example

{
"code": "OK",
"message": null,
"body": {

"ratings": {
"amountFive": 13,
"amountFour": 2,
"amountThree": 0,
"amountTwo": 0,
"amountOne": 0

},
"averageUserRating": 4.87,
"totalRatings": 15,
"totalResponses": 9,
"ratingsNoComments": 4

},
"timestamp": "2023-06-15T08:35:06.412194896+03:00"

}

1040

Using RuStore API for Access Control

App access information
This method returns a list of all accesses granted by application.

Interaction parameters

GET https://public-api.rustore.ru/public/v1/application/{packageName}/developer

Attribute Type Required Location Description Example
Public-TokenstringYesHeader HYPERLINK "/work-with-RuStore-API/api-authorization-token" Access token to API
RuStore.

N/A

packageNamestringYespathApp package
namecom.myapp.example

pageSize
number No query Number of users and their

accesses per page.
Default 20, min - 1,
max - 100

pageTokenstring
No query The API includes a pageToken element in the

response if the access list continues to another
page. Use the value obtained from the previous
request.

Nzk0MjQ3Mzc
w

Response example
Attribute Type Required Description Example

codestringYesResponse
codeerror/OK

message
string No Decoded response

code
N/A

body{}
object Yes N/A N/A

timestamptimestamptzYesResponse
time2022-07-08T13:24:41.8328711+03:00

body
Attribute Type Required Description Example

content[]
massive Yes Array with a list of users and

passwords.
pageToken

1041

No No The API includes a pageToken element
in the response if the access list
continues to another page.

Nzk0MjQ3Mzc
w

body.content[]
Attribute Type Required Description Example

devVkId
string Yes vkid 161930531

role
string Yes access type • OWNER;• NON_RESIDENT_OWNER;•

INDIVIDUAL_OWNER; • ADMIN;•
RELEASE_MANAGER;• DEV; •
FINANCIAL_MANAGER; • SUPPORT.

firstName
string Yes User name John

lastName
string Yes Last name Doe

Possible errors
codemessage

Description Solution
400 Incorrect parameter

role
Such a role does not
exist

Make sure that the specified role is
available.

Request example
curl --location 'https://public-api.rustore.ru/public/v1/application/com.package.example/developer?pageSize=20' \
--header 'Public-Token: {YOURtoken}'

Response example
{

"code": "OK",
"message": null,
"body": {

"content": [
{

"devVkId": "1111111111",
"role": "DEV",
"firstName": "John",
"lastName": "Smith"

},
{

"devVkId": "0000000000",
"role": "OWNER",
"firstName": "Mike",
"lastName": "Brown"

}
],
"pageToken": null

},
"timestamp": "2024-03-25T20:48:23.584572102+03:00"

}

1042

Revoke access
This method allows you to revoke the user’s access.

Interaction parameters

DELETE https://public-api.rustore.ru/public/v1/application/{packageName}/developer/{devVkId}/role/{roleName}

Attribute Type Required Location Description Example
Public-TokenstringYesHeader HYPERLINK "/work-with-RuStore-API/api-authorization-token" Access token to API
RuStore.

N/A

packageNamestringYespathApp package
namecom.myapp.example

devVkIdstringYespathVK ID of the user whose access is to be
revoked.743103

roleNamestring
Yes path User’s role to

be revoked.
• OWNER;• NON_RESIDENT_OWNER;•
INDIVIDUAL_OWNER; • ADMIN;•
RELEASE_MANAGER;• DEV; •
FINANCIAL_MANAGER; • SUPPORT.

Read more about each role HYPERLINK "/developers/developer-account/user-roles/" here.

Response example
Attribute Type Required Description Example

codestringYesResponse
codeerror/OK

message
string No Decoded response

code
N/A

timestamptimestamptzYesResponse
time2022-07-08T13:24:41.8328711+03:00
HYPERLINK \l "body" body{}

string Yes N/A N/A

Possible errors
codemessage

Description Solution
400 Incorrect parameter role Such a role does not

exist
Make sure that the specified role
is available.

400 Owner role can not be
revoked

You cannot remove an
owner

1043

404 No application developer
with this role found

We have not found a
developer with this role

Make sure that the parameters
devVkId and roleName are set
correctly.

Request example
curl --location --request DELETE
'https://public-api.rustore.ru/public/v1/application/com.package.example/developer/1111111111/role/DEV' \
--header 'Public-Token: {YOURtoken}'

Response example
{

"code": "OK",
"message": null,
"body": null,
"timestamp": "2024-03-25T20:50:36.360850021+03:00"

}

1044

